Search (2 results, page 1 of 1)

  • × theme_ss:"Universale Facettenklassifikationen"
  • × type_ss:"el"
  • × year_i:[2010 TO 2020}
  1. Faceted classification today : International UDC Seminar 2017, 14.-15. Spetember, London, UK. (2017) 0.00
    0.0017118829 = product of:
      0.023966359 = sum of:
        0.023966359 = weight(_text_:retrieval in 3773) [ClassicSimilarity], result of:
          0.023966359 = score(doc=3773,freq=2.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.26736724 = fieldWeight in 3773, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0625 = fieldNorm(doc=3773)
      0.071428575 = coord(1/14)
    
    Abstract
    Faceted analytical theory is a widely accepted approach for constructing modern classification schemes and other controlled vocabularies. While the advantages of faceted approach are broadly accepted and understood the actual implementation is coupled with many challenges when it comes to data modelling, management and retrieval. UDC Seminar 2017 revisits faceted analytical theory as one of the most influential methodologies in the development of knowledge organization systems.
  2. Frické, M.: Logical division (2016) 0.00
    3.6034497E-4 = product of:
      0.0050448296 = sum of:
        0.0050448296 = weight(_text_:information in 3183) [ClassicSimilarity], result of:
          0.0050448296 = score(doc=3183,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.09697737 = fieldWeight in 3183, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3183)
      0.071428575 = coord(1/14)
    
    Abstract
    Division is obviously important to Knowledge Organization. Typically, an organizational infrastructure might acknowledge three types of connecting relationships: class hierarchies, where some classes are subclasses of others, partitive hierarchies, where some items are parts of others, and instantiation, where some items are members of some classes (see Z39.19 ANSI/NISO 2005 as an example). The first two of these involve division (the third, instantiation, does not involve division). Logical division would usually be a part of hierarchical classification systems, which, in turn, are central to shelving in libraries, to subject classification schemes, to controlled vocabularies, and to thesauri. Partitive hierarchies, and partitive division, are often essential to controlled vocabularies, thesauri, and subject tagging systems. Partitive hierarchies also relate to the bearers of information; for example, a journal would typically have its component articles as parts and, in turn, they might have sections as their parts, and, of course, components might be arrived at by partitive division (see Tillett 2009 as an illustration). Finally, verbal division, disambiguating homographs, is basic to controlled vocabularies. Thus Division is a broad and relevant topic. This article, though, is going to focus on Logical Division.