Search (47 results, page 2 of 3)

  • × theme_ss:"Universale Facettenklassifikationen"
  • × year_i:[2010 TO 2020}
  1. Sharada, B.A.: Ranganathan's Colon Classification : Kannada-English Version 'dwibindu vargiikaraNa' (2012) 0.00
    0.0049073496 = product of:
      0.012268374 = sum of:
        0.0067426977 = weight(_text_:a in 827) [ClassicSimilarity], result of:
          0.0067426977 = score(doc=827,freq=4.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.12611452 = fieldWeight in 827, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=827)
        0.005525676 = product of:
          0.011051352 = sum of:
            0.011051352 = weight(_text_:information in 827) [ClassicSimilarity], result of:
              0.011051352 = score(doc=827,freq=2.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.13576832 = fieldWeight in 827, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=827)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    "dwibindu vargiikaraNa" is the Kannada rendering of the revised Colon Classification, 7th Edition, intended essentially for the classification of macro documents. This paper discusses the planning, preparation, and features of Colon Classification (CC) in Kannada, one of the major Indian languages as well as the Official Language of Karnataka, and uploading the CC on the web. Linguistic issues related to the Kannada rendering are discussed with possible solutions. It creates facilities in the field of Indexing Language (IL) to prepare products such as, Subject Heading List, Information Retrieval Thesaurus, and creation of subject glossaries or updating the available subject dictionaries in Kannada.
    Source
    Categories, contexts and relations in knowledge organization: Proceedings of the Twelfth International ISKO Conference 6-9 August 2012, Mysore, India. Eds.: Neelameghan, A. u. K.S. Raghavan
    Type
    a
  2. Babbar, P.: Web CC : an effort towards its revival (2015) 0.00
    0.004725861 = product of:
      0.011814652 = sum of:
        0.007078358 = weight(_text_:a in 2792) [ClassicSimilarity], result of:
          0.007078358 = score(doc=2792,freq=6.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.13239266 = fieldWeight in 2792, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=2792)
        0.0047362936 = product of:
          0.009472587 = sum of:
            0.009472587 = weight(_text_:information in 2792) [ClassicSimilarity], result of:
              0.009472587 = score(doc=2792,freq=2.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.116372846 = fieldWeight in 2792, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2792)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Colon Classification (CC), based on dynamic theory of classification saw seven editions from 1928 to 1987. Libraries practising it continued with extensions and additions carried out to meet their needs since it was not revised for long after the 7th edition. Revision requires adding terms in different disciplines, organising them in relation to each other and assigning notation for shelf classification. Use of ICT would help in reviving CC and is essential for regular revision of a classification scheme. The paper explores the possibility for creation of an expert system through the design of Web based Colon Classification. The author explores the possibility by designing a prototype for online revision of Colon Classification in the paper.
    Source
    Annals of library and information studies. 62(2015) no.4, S.249-254
    Type
    a
  3. Rout, R.; Panigrahi, P.: Revisiting Ranganathan's canons in online cataloguing environment (2015) 0.00
    0.0047055925 = product of:
      0.011763981 = sum of:
        0.005448922 = weight(_text_:a in 2796) [ClassicSimilarity], result of:
          0.005448922 = score(doc=2796,freq=2.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.10191591 = fieldWeight in 2796, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0625 = fieldNorm(doc=2796)
        0.006315058 = product of:
          0.012630116 = sum of:
            0.012630116 = weight(_text_:information in 2796) [ClassicSimilarity], result of:
              0.012630116 = score(doc=2796,freq=2.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.1551638 = fieldWeight in 2796, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0625 = fieldNorm(doc=2796)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Source
    Annals of library and information studies. 62(2015) no.4, S.286-289
    Type
    a
  4. Montoya, R.D.: Parsimony in biological and colon classifications (2018) 0.00
    0.0047055925 = product of:
      0.011763981 = sum of:
        0.005448922 = weight(_text_:a in 4754) [ClassicSimilarity], result of:
          0.005448922 = score(doc=4754,freq=2.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.10191591 = fieldWeight in 4754, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0625 = fieldNorm(doc=4754)
        0.006315058 = product of:
          0.012630116 = sum of:
            0.012630116 = weight(_text_:information in 4754) [ClassicSimilarity], result of:
              0.012630116 = score(doc=4754,freq=2.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.1551638 = fieldWeight in 4754, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4754)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Source
    Challenges and opportunities for knowledge organization in the digital age: proceedings of the Fifteenth International ISKO Conference, 9-11 July 2018, Porto, Portugal / organized by: International Society for Knowledge Organization (ISKO), ISKO Spain and Portugal Chapter, University of Porto - Faculty of Arts and Humanities, Research Centre in Communication, Information and Digital Culture (CIC.digital) - Porto. Eds.: F. Ribeiro u. M.E. Cerveira
    Type
    a
  5. Frické, M.: Logical division (2016) 0.00
    0.004303226 = product of:
      0.010758064 = sum of:
        0.0068111527 = weight(_text_:a in 3183) [ClassicSimilarity], result of:
          0.0068111527 = score(doc=3183,freq=8.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.12739488 = fieldWeight in 3183, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3183)
        0.003946911 = product of:
          0.007893822 = sum of:
            0.007893822 = weight(_text_:information in 3183) [ClassicSimilarity], result of:
              0.007893822 = score(doc=3183,freq=2.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.09697737 = fieldWeight in 3183, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3183)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Division is obviously important to Knowledge Organization. Typically, an organizational infrastructure might acknowledge three types of connecting relationships: class hierarchies, where some classes are subclasses of others, partitive hierarchies, where some items are parts of others, and instantiation, where some items are members of some classes (see Z39.19 ANSI/NISO 2005 as an example). The first two of these involve division (the third, instantiation, does not involve division). Logical division would usually be a part of hierarchical classification systems, which, in turn, are central to shelving in libraries, to subject classification schemes, to controlled vocabularies, and to thesauri. Partitive hierarchies, and partitive division, are often essential to controlled vocabularies, thesauri, and subject tagging systems. Partitive hierarchies also relate to the bearers of information; for example, a journal would typically have its component articles as parts and, in turn, they might have sections as their parts, and, of course, components might be arrived at by partitive division (see Tillett 2009 as an illustration). Finally, verbal division, disambiguating homographs, is basic to controlled vocabularies. Thus Division is a broad and relevant topic. This article, though, is going to focus on Logical Division.
    Type
    a
  6. Dutta, B.: Ranganathan's elucidation of subject in the light of 'Infinity (8)' (2015) 0.00
    0.0035052493 = product of:
      0.008763123 = sum of:
        0.0048162127 = weight(_text_:a in 2794) [ClassicSimilarity], result of:
          0.0048162127 = score(doc=2794,freq=4.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.090081796 = fieldWeight in 2794, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2794)
        0.003946911 = product of:
          0.007893822 = sum of:
            0.007893822 = weight(_text_:information in 2794) [ClassicSimilarity], result of:
              0.007893822 = score(doc=2794,freq=2.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.09697737 = fieldWeight in 2794, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2794)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    This paper reviews Ranganathan's description of subject from mathematical angle. Ranganathan was highly influenced by Nineteenth Century mathematician George Cantor and he used the concept of infinity in developing an axiomatic interpretation of subject. Majority of library scientists interpreted the concept of subject merely as a term or descriptor or heading to include the same in cataloguing and subject indexing. Some library scientists interpreted subject on the basis of document, i.e. from the angle of the concept of aboutness or epistemological potential of the document etc. Some people explained subject from the viewpoint of social, cultural or socio-cultural process. Attempts were made to describe subject from epistemological viewpoint. But S R Ranganathan was the first to develop an axiomatic concept of subject on its own. He built up an independent idea of subject that is ubiquitously pervasive with human cognition process. To develop the basic foundation of subject, he used the mathematical concepts of infinity and infinitesimal and construed the set of subjects or universe of subjects as continuous infinite universe. The subject may also exist in extremely micro-form, which was termed as spot subject and analogized with point, which is dimensionless having only an existence. The influence of Twentieth Century physicist George Gamow on Ranganathan's thought has also been discussed.
    Source
    Annals of library and information studies. 62(2015) no.4, S.255-264
    Type
    a
  7. Asundi, A.Y.: Domain specific categories and relations and their potential applications : a case study of two arrays of agriculture schedule of Colon Classification (2012) 0.00
    0.0024520152 = product of:
      0.012260076 = sum of:
        0.012260076 = weight(_text_:a in 843) [ClassicSimilarity], result of:
          0.012260076 = score(doc=843,freq=18.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.22931081 = fieldWeight in 843, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=843)
      0.2 = coord(1/5)
    
    Abstract
    The categories/isolates are broadly conceived as common and special. The common categories are applicable to all the classes of subjects in a Classification system, whereas the specials are applicable within a domain or specified classes of a classification system. The CC has represented some unique special categories, especially in the Agriculture Subject schedule, and such a provision is not seen in any other classification system; not even in any other subject schedule of Colon Classification. These special categories are termed here as "Domain Specific Categories". The paper analyses the thematic relationships within and outside the subject schedule with potential applications in devising a scheme of metadata as demonstrated in a research study on Indian Medicinal Plants. The other potential applications of such thematic relationships are in the creation of semantic maps and in linking concepts from different domains of knowledge.
    Source
    Categories, contexts and relations in knowledge organization: Proceedings of the Twelfth International ISKO Conference 6-9 August 2012, Mysore, India. Eds.: Neelameghan, A. u. K.S. Raghavan
    Type
    a
  8. Smiraglia, R.P.: ¬A brief introduction to facets in knowledge organization (2017) 0.00
    0.002311782 = product of:
      0.01155891 = sum of:
        0.01155891 = weight(_text_:a in 1131) [ClassicSimilarity], result of:
          0.01155891 = score(doc=1131,freq=4.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.2161963 = fieldWeight in 1131, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.09375 = fieldNorm(doc=1131)
      0.2 = coord(1/5)
    
    Type
    a
  9. Broughton, V.: Concepts and terms in the faceted classification : the case of UDC (2010) 0.00
    0.002259004 = product of:
      0.01129502 = sum of:
        0.01129502 = weight(_text_:a in 4065) [ClassicSimilarity], result of:
          0.01129502 = score(doc=4065,freq=22.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.21126054 = fieldWeight in 4065, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4065)
      0.2 = coord(1/5)
    
    Abstract
    Recent revision of UDC classes has aimed at implementing a more faceted approach. Many compound classes have been removed from the main tables, and more radical revisions of classes (particularly those for Medicine and Religion) have introduced a rigorous analysis, a clearer sense of citation order, and building of compound classes according to a more logical system syntax. The faceted approach provides a means of formalizing the relationships in the classification and making them explicit for machine recognition. In the Bliss Bibliographic Classification (BC2) (which has been a source for both UDC classes mentioned above), terminologies are encoded for automatic generation of hierarchical and associative relationships. Nevertheless, difficulties are encountered in vocabulary control, and a similar phenomenon is observed in UDC. Current work has revealed differences in the vocabulary of humanities and science, notably the way in which terms in the humanities should be handled when these are semantically complex. Achieving a balance between rigour in the structure of the classification and the complexity of natural language expression remains partially unresolved at present, but provides a fertile field for further research.
    Content
    Teil von: Papers from Classification at a Crossroads: Multiple Directions to Usability: International UDC Seminar 2009-Part 2
    Type
    a
  10. Broughton, V.: Facet analysis as a tool for modelling subject domains and terminologies (2011) 0.00
    0.002259004 = product of:
      0.01129502 = sum of:
        0.01129502 = weight(_text_:a in 4826) [ClassicSimilarity], result of:
          0.01129502 = score(doc=4826,freq=22.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.21126054 = fieldWeight in 4826, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4826)
      0.2 = coord(1/5)
    
    Abstract
    Facet analysis is proposed as a general theory of knowledge organization, with an associated methodology that may be applied to the development of terminology tools in a variety of contexts and formats. Faceted classifications originated as a means of representing complexity in semantic content that facilitates logical organization and effective retrieval in a physical environment. This is achieved through meticulous analysis of concepts, their structural and functional status (based on fundamental categories), and their inter-relationships. These features provide an excellent basis for the general conceptual modelling of domains, and for the generation of KOS other than systematic classifications. This is demonstrated by the adoption of a faceted approach to many web search and visualization tools, and by the emergence of a facet based methodology for the construction of thesauri. Current work on the Bliss Bibliographic Classification (Second Edition) is investigating the ways in which the full complexity of faceted structures may be represented through encoded data, capable of generating intellectually and mechanically compatible forms of indexing tools from a single source. It is suggested that a number of research questions relating to the Semantic Web could be tackled through the medium of facet analysis.
    Source
    Classification and ontology: formal approaches and access to knowledge: proceedings of the International UDC Seminar, 19-20 September 2011, The Hague, The Netherlands. Eds.: A. Slavic u. E. Civallero
    Type
    a
  11. Szostak, R.: Facet analysis using grammar (2017) 0.00
    0.0021538758 = product of:
      0.010769378 = sum of:
        0.010769378 = weight(_text_:a in 3866) [ClassicSimilarity], result of:
          0.010769378 = score(doc=3866,freq=20.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.20142901 = fieldWeight in 3866, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3866)
      0.2 = coord(1/5)
    
    Abstract
    Basic grammar can achieve most/all of the goals of facet analysis without requiring the use of facet indicators. Facet analysis is thus rendered far simpler for classificationist, classifier, and user. We compare facet analysis and grammar, and show how various facets can be represented grammatically. We then address potential challenges in employing grammar as subject classification. A detailed review of basic grammar supports the hypothesis that it is feasible to usefully employ grammatical construction in subject classification. A manageable - and programmable - set of adjustments is required as classifiers move fairly directly from sentences in a document (or object or idea) description to formulating a subject classification. The user likewise can move fairly quickly from a query to the identification of relevant works. A review of theories in linguistics indicates that a grammatical approach should reduce ambiguity while encouraging ease of use. This paper applies the recommended approach to a small sample of recently published books. It finds that the approach is feasible and results in a more precise subject description than the subject headings assigned at present. It then explores PRECIS, an indexing system developed in the 1970s. Though our approach differs from PRECIS in many important ways, the experience of PRECIS supports our conclusions regarding both feasibility and precision.
    Type
    a
  12. Gnoli, C.; Pullman, T.; Cousson, P.; Merli, G.; Szostak, R.: Representing the structural elements of a freely faceted classification (2011) 0.00
    0.002043346 = product of:
      0.01021673 = sum of:
        0.01021673 = weight(_text_:a in 4825) [ClassicSimilarity], result of:
          0.01021673 = score(doc=4825,freq=18.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.19109234 = fieldWeight in 4825, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4825)
      0.2 = coord(1/5)
    
    Abstract
    Freely faceted classifications allow for free combination of concepts across all knowledge domains, and for sorting of the resulting compound classmarks. Starting from work by the Classification Research Group, the Integrative Levels Classification (ILC) project has produced a first edition of a general freely faceted scheme. The system is managed as a MySQL database, and can be browsed through a Web interface. The ILC database structure provides a case for identifying and representing the structural elements of any freely faceted classification. These belong to both the notational and the verbal planes. Notational elements include: arrays, chains, deictics, facets, foci, place of definition of foci, examples of combinations, subclasses of a faceted class, groupings, related classes; verbal elements include: main caption, synonyms, descriptions, included terms, related terms, notes. Encoding of some of these elements in an international mark-up format like SKOS can be problematic, especially as this does not provide for faceted structures, although approximate SKOS equivalents are identified for most of them.
    Source
    Classification and ontology: formal approaches and access to knowledge: proceedings of the International UDC Seminar, 19-20 September 2011, The Hague, The Netherlands. Eds.: A. Slavic u. E. Civallero
    Type
    a
  13. Barité, M.; Rauch, M.: Systematifier : in rescue of a useful tool in domain analysis (2017) 0.00
    0.002043346 = product of:
      0.01021673 = sum of:
        0.01021673 = weight(_text_:a in 4142) [ClassicSimilarity], result of:
          0.01021673 = score(doc=4142,freq=18.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.19109234 = fieldWeight in 4142, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4142)
      0.2 = coord(1/5)
    
    Abstract
    Literature on the systematifier is remarkably limited in knowledge organization. Dahlberg created the procedure in the seventies as a guide for the construction of classification systems and showed its applicability in systems she developed. According to her initial conception, all disciplines should be structured in the following sequence: Foundations and theories-Subjects of study-Methods-Influences-Applications-Environment. The nature of the procedure is determined in this study and the concept is situated in relation with the domain analysis methodologies. As a tool for the organization of the map of a certain domain, it is associated with a rationalist perspective and the top-down design of systems construction. It would require a reassessment of its scope in order to ensure its applicability to multidisciplinary and interdisciplinary domains. Among other conclusions, it is highlighted that the greatest potential of the systematifier is given by the fact that-as a methodological device-it can act as: i)an analyzer of a subject area; ii)an organizer of its main terms; and, iii)an identifier of links, bridges and intersection points with other knowledge areas.
    Type
    a
  14. Doria, O.D.: ¬The role of activities awareness in faceted classification development (2012) 0.00
    0.0019071229 = product of:
      0.009535614 = sum of:
        0.009535614 = weight(_text_:a in 364) [ClassicSimilarity], result of:
          0.009535614 = score(doc=364,freq=8.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.17835285 = fieldWeight in 364, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=364)
      0.2 = coord(1/5)
    
    Abstract
    In this paper, we propose a part of the methodological work to accompanying the development of a new type of Knowledge Organization System (KOS) based on faceted classification. Our approach to faceted classification differs from its traditional use. We develop a theoretical typology of professional documents based on their uses. Then we correlate these types of documents to specific types of KOS according to their degree of structural constraint and activities they aim to serve.
    Type
    a
  15. Dimensions of knowledge : facets for knowledge organization (2017) 0.00
    0.0016683849 = product of:
      0.008341924 = sum of:
        0.008341924 = weight(_text_:a in 4154) [ClassicSimilarity], result of:
          0.008341924 = score(doc=4154,freq=12.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.15602624 = fieldWeight in 4154, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4154)
      0.2 = coord(1/5)
    
    Abstract
    The identification and contextual definition of concepts is the core of knowledge organization. The full expression of comprehension is accomplished through the use of an extension device called the facet. A facet is a category of dimensional characteristics that cross the hierarchical array of concepts to provide extension, or breadth, to the contexts in which they are discovered or expressed in knowledge organization systems. The use of the facet in knowledge organization has a rich history arising in the mid-nineteenth century. As it has matured through more than a century of application, the notion of the facet in knowledge organization has taken on a variety of meanings, from that of simple categories used in web search engines to the more sophisticated idea of intersecting dimensions of knowledge. This book describes the state of the art of the understanding of facets in knowledge organization today.
    Content
    Inhalt: Richard P. Smiraglia: A Brief Introduction to Facets in Knowledge Organization / Kathryn La Barre: Interrogating Facet Theory: Decolonizing Knowledge Organization / Joseph T. Tennis: Never Facets Alone: The Evolving Thought and Persistent Problems in Ranganathan's Theories of Classification / M. P. Satija and Dong-Guen Oh: The DDC and the Knowledge Categories: Dewey did Faceting without Knowing It / Claudio Gnoli: Classifying Phenomena Part 3: Facets / Rick Szostak: Facet Analysis Without Facet Indicators / Elizabeth Milonas: An Examination of Facets within Search Engine Result Pages / Richard P. Smiraglia: Facets for Clustering and Disambiguation: The Domain Discourse of Facets in Knowledge Organization
  16. Smiraglia, R.P.: Facets for clustering and disambiguation : the domain discourse of facets in knowledge organization (2017) 0.00
    0.0016346768 = product of:
      0.008173384 = sum of:
        0.008173384 = weight(_text_:a in 4153) [ClassicSimilarity], result of:
          0.008173384 = score(doc=4153,freq=2.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.15287387 = fieldWeight in 4153, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.09375 = fieldNorm(doc=4153)
      0.2 = coord(1/5)
    
    Type
    a
  17. LaBarre, K.: Interrogating facet theory : decolonizing knowledge organization (2017) 0.00
    0.0016346768 = product of:
      0.008173384 = sum of:
        0.008173384 = weight(_text_:a in 4155) [ClassicSimilarity], result of:
          0.008173384 = score(doc=4155,freq=2.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.15287387 = fieldWeight in 4155, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.09375 = fieldNorm(doc=4155)
      0.2 = coord(1/5)
    
    Type
    a
  18. Satija, M.P.; Oh, D.-G.: ¬The DDC and the knowledge categories : Dewey did faceting without knowing it (2017) 0.00
    0.0016346768 = product of:
      0.008173384 = sum of:
        0.008173384 = weight(_text_:a in 4157) [ClassicSimilarity], result of:
          0.008173384 = score(doc=4157,freq=2.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.15287387 = fieldWeight in 4157, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.09375 = fieldNorm(doc=4157)
      0.2 = coord(1/5)
    
    Type
    a
  19. Gnoli, C.: Classifying phenomena : part 3: facets (2017) 0.00
    0.0016346768 = product of:
      0.008173384 = sum of:
        0.008173384 = weight(_text_:a in 4158) [ClassicSimilarity], result of:
          0.008173384 = score(doc=4158,freq=2.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.15287387 = fieldWeight in 4158, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.09375 = fieldNorm(doc=4158)
      0.2 = coord(1/5)
    
    Type
    a
  20. Szostak, R.: Facet analysis without facet indicators (2017) 0.00
    0.0016346768 = product of:
      0.008173384 = sum of:
        0.008173384 = weight(_text_:a in 4159) [ClassicSimilarity], result of:
          0.008173384 = score(doc=4159,freq=2.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.15287387 = fieldWeight in 4159, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.09375 = fieldNorm(doc=4159)
      0.2 = coord(1/5)
    
    Type
    a