Search (107 results, page 5 of 6)

  • × theme_ss:"Universale Facettenklassifikationen"
  1. Broughton, V.: Language related problems in the construction of faceted terminologies and their automatic management (2008) 0.00
    0.0018020617 = product of:
      0.009010308 = sum of:
        0.009010308 = weight(_text_:a in 2497) [ClassicSimilarity], result of:
          0.009010308 = score(doc=2497,freq=14.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.1685276 = fieldWeight in 2497, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2497)
      0.2 = coord(1/5)
    
    Content
    The paper describes current work on the generation of a thesaurus format from the schedules of the Bliss Bibliographic Classification 2nd edition (BC2). The practical problems that occur in moving from a concept based approach to a terminological approach cluster around issues of vocabulary control that are not fully addressed in a systematic structure. These difficulties can be exacerbated within domains in the humanities because large numbers of culture specific terms may need to be accommodated in any thesaurus. The ways in which these problems can be resolved within the context of a semi-automated approach to the thesaurus generation have consequences for the management of classification data in the source vocabulary. The way in which the vocabulary is marked up for the purpose of machine manipulation is described, and some of the implications for editorial policy are discussed and examples given. The value of the classification notation as a language independent representation and mapping tool should not be sacrificed in such an exercise.
    Type
    a
  2. Austin, D.: Prospects for a new general classification (1969) 0.00
    0.0016683849 = product of:
      0.008341924 = sum of:
        0.008341924 = weight(_text_:a in 1519) [ClassicSimilarity], result of:
          0.008341924 = score(doc=1519,freq=12.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.15602624 = fieldWeight in 1519, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1519)
      0.2 = coord(1/5)
    
    Abstract
    In traditional classification schemes, the universe of knowledge is brokeii down into self- contained disciplines which are further analysed to the point at which a particular concept is located. This leads to problems of: (a) currency: keeping the scheme in line with new discoveries. (b) hospitality: allowing room for insertion of new subjects (c) cross-classification: a concept may be considered in such a way that it fits as logically into one discipline as another. Machine retrieval is also hampered by the fact that any individual concept is notated differently, depending on where in the scheme it appears. The approach now considered is from an organized universe of concepts, every concept being set down only once in an appropriate vocabulary, where it acquires the notation which identifies it wherever it is used. It has been found that all the concepts present in any compound subject can be handled as though they belong to one of two basic concept types, being either Entities or Attributes. In classing, these concepts are identified, and notation is selected from appropriate schedules. Subjects are then built according to formal rules, the final class number incorporating operators which convey the fundamental relationships between concepts. From this viewpoint, the Rules and Operators of the proposed system can be seen as the grammar of an IR language, and the schedules of Entities and Attributes as its vocabulary.
    Type
    a
  3. Dimensions of knowledge : facets for knowledge organization (2017) 0.00
    0.0016683849 = product of:
      0.008341924 = sum of:
        0.008341924 = weight(_text_:a in 4154) [ClassicSimilarity], result of:
          0.008341924 = score(doc=4154,freq=12.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.15602624 = fieldWeight in 4154, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4154)
      0.2 = coord(1/5)
    
    Abstract
    The identification and contextual definition of concepts is the core of knowledge organization. The full expression of comprehension is accomplished through the use of an extension device called the facet. A facet is a category of dimensional characteristics that cross the hierarchical array of concepts to provide extension, or breadth, to the contexts in which they are discovered or expressed in knowledge organization systems. The use of the facet in knowledge organization has a rich history arising in the mid-nineteenth century. As it has matured through more than a century of application, the notion of the facet in knowledge organization has taken on a variety of meanings, from that of simple categories used in web search engines to the more sophisticated idea of intersecting dimensions of knowledge. This book describes the state of the art of the understanding of facets in knowledge organization today.
    Content
    Inhalt: Richard P. Smiraglia: A Brief Introduction to Facets in Knowledge Organization / Kathryn La Barre: Interrogating Facet Theory: Decolonizing Knowledge Organization / Joseph T. Tennis: Never Facets Alone: The Evolving Thought and Persistent Problems in Ranganathan's Theories of Classification / M. P. Satija and Dong-Guen Oh: The DDC and the Knowledge Categories: Dewey did Faceting without Knowing It / Claudio Gnoli: Classifying Phenomena Part 3: Facets / Rick Szostak: Facet Analysis Without Facet Indicators / Elizabeth Milonas: An Examination of Facets within Search Engine Result Pages / Richard P. Smiraglia: Facets for Clustering and Disambiguation: The Domain Discourse of Facets in Knowledge Organization
  4. Chatterjee, A.; Choudhury, G.G.: CC7: an evaluation of its development in three planes (1989) 0.00
    0.001651617 = product of:
      0.008258085 = sum of:
        0.008258085 = weight(_text_:a in 517) [ClassicSimilarity], result of:
          0.008258085 = score(doc=517,freq=6.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.1544581 = fieldWeight in 517, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=517)
      0.2 = coord(1/5)
    
    Abstract
    Reviews the new edition of CC, which has incorporated most of the developments in the idea plane and notational plane reported in the literature during the previous 20 years, making it a 'freely faceted' scheme. However, some errors have crept in which are bound to create problems for the users. Both these aspects have been critically examined here drawing comparison, where necessary, with the previous edition of the scheme. Reveals the enormously improved capabilities of the scheme in meeting the challenge posed by the ever expanding horizon of the universe of subjects as also the inconsistencies and lack of cohesion in various schedules
    Type
    a
  5. Hudon, M.: Facet (2020) 0.00
    0.001651617 = product of:
      0.008258085 = sum of:
        0.008258085 = weight(_text_:a in 5899) [ClassicSimilarity], result of:
          0.008258085 = score(doc=5899,freq=6.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.1544581 = fieldWeight in 5899, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5899)
      0.2 = coord(1/5)
    
    Abstract
    S.R. Ranganathan is credited with the introduction of the term "facet" in the field of knowledge organization towards the middle of the twentieth century. Facets have traditionally been used to organize document collections and to express complex subjects. In the digital world, they act as filters to facilitate navigation and improve retrieval. But the popularity of the term does not mean that a definitive characterization of the concept has been established. Indeed, several conceptualizations of the facet co-exist. This article provides an overview of formal and informal definitions found in the literature of knowledge organization, followed by a discussion of four common conceptualizations of the facet: process vs product, nature vs function, object vs subject and organization vs navigation.
    Type
    a
  6. Austin, D.: Basic concept classes and primitive relations (1982) 0.00
    0.0016346768 = product of:
      0.008173384 = sum of:
        0.008173384 = weight(_text_:a in 6580) [ClassicSimilarity], result of:
          0.008173384 = score(doc=6580,freq=2.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.15287387 = fieldWeight in 6580, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.09375 = fieldNorm(doc=6580)
      0.2 = coord(1/5)
    
    Type
    a
  7. Scheele, M.: ¬Die universelle Facetten-Classifikation (UFC) und ihre mögliche Bedeutung für Allgemeinbildung, Terminologieforschung und Informationswesen (1978) 0.00
    0.0016346768 = product of:
      0.008173384 = sum of:
        0.008173384 = weight(_text_:a in 66) [ClassicSimilarity], result of:
          0.008173384 = score(doc=66,freq=2.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.15287387 = fieldWeight in 66, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.09375 = fieldNorm(doc=66)
      0.2 = coord(1/5)
    
    Type
    a
  8. Smiraglia, R.P.: Facets for clustering and disambiguation : the domain discourse of facets in knowledge organization (2017) 0.00
    0.0016346768 = product of:
      0.008173384 = sum of:
        0.008173384 = weight(_text_:a in 4153) [ClassicSimilarity], result of:
          0.008173384 = score(doc=4153,freq=2.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.15287387 = fieldWeight in 4153, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.09375 = fieldNorm(doc=4153)
      0.2 = coord(1/5)
    
    Type
    a
  9. LaBarre, K.: Interrogating facet theory : decolonizing knowledge organization (2017) 0.00
    0.0016346768 = product of:
      0.008173384 = sum of:
        0.008173384 = weight(_text_:a in 4155) [ClassicSimilarity], result of:
          0.008173384 = score(doc=4155,freq=2.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.15287387 = fieldWeight in 4155, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.09375 = fieldNorm(doc=4155)
      0.2 = coord(1/5)
    
    Type
    a
  10. Satija, M.P.; Oh, D.-G.: ¬The DDC and the knowledge categories : Dewey did faceting without knowing it (2017) 0.00
    0.0016346768 = product of:
      0.008173384 = sum of:
        0.008173384 = weight(_text_:a in 4157) [ClassicSimilarity], result of:
          0.008173384 = score(doc=4157,freq=2.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.15287387 = fieldWeight in 4157, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.09375 = fieldNorm(doc=4157)
      0.2 = coord(1/5)
    
    Type
    a
  11. Gnoli, C.: Classifying phenomena : part 3: facets (2017) 0.00
    0.0016346768 = product of:
      0.008173384 = sum of:
        0.008173384 = weight(_text_:a in 4158) [ClassicSimilarity], result of:
          0.008173384 = score(doc=4158,freq=2.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.15287387 = fieldWeight in 4158, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.09375 = fieldNorm(doc=4158)
      0.2 = coord(1/5)
    
    Type
    a
  12. Szostak, R.: Facet analysis without facet indicators (2017) 0.00
    0.0016346768 = product of:
      0.008173384 = sum of:
        0.008173384 = weight(_text_:a in 4159) [ClassicSimilarity], result of:
          0.008173384 = score(doc=4159,freq=2.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.15287387 = fieldWeight in 4159, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.09375 = fieldNorm(doc=4159)
      0.2 = coord(1/5)
    
    Type
    a
  13. Milonas, E.: ¬An examination of facets within search engine result pages (2017) 0.00
    0.0016346768 = product of:
      0.008173384 = sum of:
        0.008173384 = weight(_text_:a in 4160) [ClassicSimilarity], result of:
          0.008173384 = score(doc=4160,freq=2.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.15287387 = fieldWeight in 4160, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.09375 = fieldNorm(doc=4160)
      0.2 = coord(1/5)
    
    Type
    a
  14. Rodriguez, R.D.: Kaiser's systematic indexing (1984) 0.00
    0.001541188 = product of:
      0.00770594 = sum of:
        0.00770594 = weight(_text_:a in 4521) [ClassicSimilarity], result of:
          0.00770594 = score(doc=4521,freq=4.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.14413087 = fieldWeight in 4521, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0625 = fieldNorm(doc=4521)
      0.2 = coord(1/5)
    
    Abstract
    J. Kaiser (1868-1927) developed a system of subject indexing based on what he called "concretes" and "processes" to govern the form of subject headings and subdivisions. Although Kaiser applied his systematic indexing to specialized technical and business collections, his ideas are entirely applicable to all book collections and catalogs. Though largely ignored, Kaiser's system is of permanent interest in the study of the development of subject analysis
    Type
    a
  15. Frické, M.: Faceted classification : orthogonal facets and graphs of foci? (2011) 0.00
    0.0015230201 = product of:
      0.0076151006 = sum of:
        0.0076151006 = weight(_text_:a in 4850) [ClassicSimilarity], result of:
          0.0076151006 = score(doc=4850,freq=10.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.14243183 = fieldWeight in 4850, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4850)
      0.2 = coord(1/5)
    
    Abstract
    Faceted classification is based on the core ideas that there are kinds or categories of concepts, and that compound, or non-elemental, concepts, which are ubiquitous in classification and subject annotation, are to be identified as being constructions of concepts of the different kinds. The categories of concepts are facets, and the individual concepts, which are instances of those facets, are foci. Usually, there are constraints on how the foci can be combined into the compound concepts. What is standard is that any combination of foci is permitted from kind-to-kind across facets, but that the foci within a facet are restricted in their use by virtue of being dependent on each other, either by being exclusive of each other or by bearing some kind of hierarchical relationship to each other. Thus faceted classification is typically considered to be a synthetic classification consisting of orthogonal facets which themselves are composed individually either of exclusive foci or of a hierarchy of foci. This paper addresses in particular this second exclusive-or-hierarchical foci condition. It evaluates the arguments for the condition and finds them not conclusive. It suggests that wider synthetic constructions should be allowed on foci within a facet.
    Type
    a
  16. Madalli, D.P.; Prasad, A.R.D.: Analytico-synthetic approach for handling knowledge diversity in media content analysis (2011) 0.00
    0.0014156717 = product of:
      0.007078358 = sum of:
        0.007078358 = weight(_text_:a in 4827) [ClassicSimilarity], result of:
          0.007078358 = score(doc=4827,freq=6.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.13239266 = fieldWeight in 4827, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=4827)
      0.2 = coord(1/5)
    
    Abstract
    Knowledge space is diverse and thus extremely complex. With increased means for online publishing and communication world communities are actively contributing content. This augments the need to find and access resources in different contexts and for different purposes. Owing to different socio-cultural backgrounds, purposes and applications, knowledge generated by people is marked by diversity. Hence, knowledge representation for building diversity-aware tools presents interesting research challenges. In this paper, we provide an analytico-synthetic approach for dealing with topical diversity following a faceted subject indexing method. Illustrations are used to demonstrate facet analysis and synthesis for use in annotations for Media Content Analysis within the European Commission (EC) funded 'Living Knowledge' project.
    Source
    Classification and ontology: formal approaches and access to knowledge: proceedings of the International UDC Seminar, 19-20 September 2011, The Hague, The Netherlands. Eds.: A. Slavic u. E. Civallero
    Type
    a
  17. Asundi, A.Y.: Epistemological basis of some common categories : a study of space and time as common concepts (2012) 0.00
    0.0014156717 = product of:
      0.007078358 = sum of:
        0.007078358 = weight(_text_:a in 842) [ClassicSimilarity], result of:
          0.007078358 = score(doc=842,freq=6.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.13239266 = fieldWeight in 842, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=842)
      0.2 = coord(1/5)
    
    Source
    Categories, contexts and relations in knowledge organization: Proceedings of the Twelfth International ISKO Conference 6-9 August 2012, Mysore, India. Eds.: Neelameghan, A. u. K.S. Raghavan
    Type
    a
  18. Satija, M.P.: Colon Classification (CC) (2017) 0.00
    0.0013622305 = product of:
      0.0068111527 = sum of:
        0.0068111527 = weight(_text_:a in 3842) [ClassicSimilarity], result of:
          0.0068111527 = score(doc=3842,freq=8.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.12739488 = fieldWeight in 3842, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3842)
      0.2 = coord(1/5)
    
    Abstract
    Shiyali Ramamrita Ranganathan (1892-1972) has been called the father of the Indian library movement. He developed the revolutionary Colon Classification (CC) from 1924 to 1928, which was published in seven editions from 1933 to 1987. In this article, the evolution of CC through its seven editions is discussed. The unique features of CC are described, including the work in idea, verbal, and notational planes. Tools for designing and evaluating a system are enshrined in his fifty-five canons, twenty-two principles, thirteen postulates, and ten devices (Indian Statistical Institute 2012, 34-38). Semantic and syntactic relations are enshrined in his order of main classes, Principles of Helpful Sequence in arrays, the PMEST facet formula fitted with rounds and levels of facets, and other principles, such as the famous wall-picture principle for citation order of facets, and numerous devices for improvising class numbers for non-existent isolates and potential subjects. Briefly explained are facet and phase analyses and number building with its notational base of seventy-four characters and symbols. The entry concludes with a discussion of the extent of application of CC in libraries, its contribution to the science of classification, and a view of its future.
    Type
    a
  19. Broughton, V.: Meccano, molecules, and the organization of knowledge : the continuing contribution of S.R. Ranganathan (2007) 0.00
    0.0013485396 = product of:
      0.0067426977 = sum of:
        0.0067426977 = weight(_text_:a in 1807) [ClassicSimilarity], result of:
          0.0067426977 = score(doc=1807,freq=4.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.12611452 = fieldWeight in 1807, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1807)
      0.2 = coord(1/5)
    
    Abstract
    Vanda, lecturer at SLAIS and ISKOUK Chairperson, provided an account of the origins of faceted classification in the work of the eminent Indian scholar and librarian S. R. Ranganathan in the 1930s and described how its influence persists today. Ranganathan himself derived inspiration for his Colon Classification from Meccano, which he came across in a London toy shop whilst studying at UCL in 1924. Vanda, on the other hand, proposed that the molecular model is perhaps a better representation
  20. Integrative level classification: Research project (2004-) 0.00
    0.0013485396 = product of:
      0.0067426977 = sum of:
        0.0067426977 = weight(_text_:a in 1151) [ClassicSimilarity], result of:
          0.0067426977 = score(doc=1151,freq=4.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.12611452 = fieldWeight in 1151, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1151)
      0.2 = coord(1/5)
    
    Abstract
    Integrative level classification (ILC) is a research project being developed since 2004 by some members of the Italian chapter of ISKO, also involving cooperation with other researchers. Anyone interested is welcome to contact us at: ilc@mate.unipv.it. Aim of the project is to test application of the theory of integrative levels to knowledge organization (KO). This implies a naturalistic-ontological approach to KO, which is obviously not the only possible approach - actually it even looks to be unfashionable nowadays, although it agrees with current trends towards interdisciplinarity and interrelation between many research fields.

Languages

  • e 101
  • d 5
  • chi 1
  • More… Less…

Types

  • a 93
  • el 9
  • m 7
  • s 4
  • b 1
  • More… Less…