Search (16 results, page 1 of 1)

  • × theme_ss:"Visualisierung"
  • × type_ss:"el"
  • × year_i:[2010 TO 2020}
  1. Graphic details : a scientific study of the importance of diagrams to science (2016) 0.01
    0.01482497 = product of:
      0.02964994 = sum of:
        0.02964994 = sum of:
          0.010929798 = weight(_text_:a in 3035) [ClassicSimilarity], result of:
            0.010929798 = score(doc=3035,freq=58.0), product of:
              0.053105544 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046056706 = queryNorm
              0.20581275 = fieldWeight in 3035, product of:
                7.615773 = tf(freq=58.0), with freq of:
                  58.0 = termFreq=58.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.0234375 = fieldNorm(doc=3035)
          0.018720143 = weight(_text_:22 in 3035) [ClassicSimilarity], result of:
            0.018720143 = score(doc=3035,freq=2.0), product of:
              0.16128273 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046056706 = queryNorm
              0.116070345 = fieldWeight in 3035, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0234375 = fieldNorm(doc=3035)
      0.5 = coord(1/2)
    
    Abstract
    A PICTURE is said to be worth a thousand words. That metaphor might be expected to pertain a fortiori in the case of scientific papers, where a figure can brilliantly illuminate an idea that might otherwise be baffling. Papers with figures in them should thus be easier to grasp than those without. They should therefore reach larger audiences and, in turn, be more influential simply by virtue of being more widely read. But are they?
    Content
    Bill Howe and his colleagues at the University of Washington, in Seattle, decided to find out. First, they trained a computer algorithm to distinguish between various sorts of figures-which they defined as diagrams, equations, photographs, plots (such as bar charts and scatter graphs) and tables. They exposed their algorithm to between 400 and 600 images of each of these types of figure until it could distinguish them with an accuracy greater than 90%. Then they set it loose on the more-than-650,000 papers (containing more than 10m figures) stored on PubMed Central, an online archive of biomedical-research articles. To measure each paper's influence, they calculated its article-level Eigenfactor score-a modified version of the PageRank algorithm Google uses to provide the most relevant results for internet searches. Eigenfactor scoring gives a better measure than simply noting the number of times a paper is cited elsewhere, because it weights citations by their influence. A citation in a paper that is itself highly cited is worth more than one in a paper that is not.
    As the team describe in a paper posted (http://arxiv.org/abs/1605.04951) on arXiv, they found that figures did indeed matter-but not all in the same way. An average paper in PubMed Central has about one diagram for every three pages and gets 1.67 citations. Papers with more diagrams per page and, to a lesser extent, plots per page tended to be more influential (on average, a paper accrued two more citations for every extra diagram per page, and one more for every extra plot per page). By contrast, including photographs and equations seemed to decrease the chances of a paper being cited by others. That agrees with a study from 2012, whose authors counted (by hand) the number of mathematical expressions in over 600 biology papers and found that each additional equation per page reduced the number of citations a paper received by 22%. This does not mean that researchers should rush to include more diagrams in their next paper. Dr Howe has not shown what is behind the effect, which may merely be one of correlation, rather than causation. It could, for example, be that papers with lots of diagrams tend to be those that illustrate new concepts, and thus start a whole new field of inquiry. Such papers will certainly be cited a lot. On the other hand, the presence of equations really might reduce citations. Biologists (as are most of those who write and read the papers in PubMed Central) are notoriously mathsaverse. If that is the case, looking in a physics archive would probably produce a different result.
    Dr Howe and his colleagues do, however, believe that the study of diagrams can result in new insights. A figure showing new metabolic pathways in a cell, for example, may summarise hundreds of experiments. Since illustrations can convey important scientific concepts in this way, they think that browsing through related figures from different papers may help researchers come up with new theories. As Dr Howe puts it, "the unit of scientific currency is closer to the figure than to the paper." With this thought in mind, the team have created a website (viziometrics.org (http://viziometrics.org/) ) where the millions of images sorted by their program can be searched using key words. Their next plan is to extract the information from particular types of scientific figure, to create comprehensive "super" figures: a giant network of all the known chemical processes in a cell for example, or the best-available tree of life. At just one such superfigure per paper, though, the citation records of articles containing such all-embracing diagrams may very well undermine the correlation that prompted their creation in the first place. Call it the ultimate marriage of chart and science.
    Language
    a
    Type
    a
  2. Denton, W.: On dentographs, a new method of visualizing library collections (2012) 0.00
    0.003827074 = product of:
      0.007654148 = sum of:
        0.007654148 = product of:
          0.015308296 = sum of:
            0.015308296 = weight(_text_:a in 580) [ClassicSimilarity], result of:
              0.015308296 = score(doc=580,freq=16.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.28826174 = fieldWeight in 580, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=580)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    A dentograph is a visualization of a library's collection built on the idea that a classification scheme is a mathematical function mapping one set of things (books or the universe of knowledge) onto another (a set of numbers and letters). Dentographs can visualize aspects of just one collection or can be used to compare two or more collections. This article describes how to build them, with examples and code using Ruby and R, and discusses some problems and future directions.
    Type
    a
  3. Eckert, K: ¬The ICE-map visualization (2011) 0.00
    0.0030255679 = product of:
      0.0060511357 = sum of:
        0.0060511357 = product of:
          0.012102271 = sum of:
            0.012102271 = weight(_text_:a in 4743) [ClassicSimilarity], result of:
              0.012102271 = score(doc=4743,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.22789092 = fieldWeight in 4743, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4743)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In this paper, we describe in detail the Information Content Evaluation Map (ICE-Map Visualization, formerly referred to as IC Difference Analysis). The ICE-Map Visualization is a visual data mining approach for all kinds of concept hierarchies that uses statistics about the concept usage to help a user in the evaluation and maintenance of the hierarchy. It consists of a statistical framework that employs the the notion of information content from information theory, as well as a visualization of the hierarchy and the result of the statistical analysis by means of a treemap.
  4. Kraker, P.; Kittel, C,; Enkhbayar, A.: Open Knowledge Maps : creating a visual interface to the world's scientific knowledge based on natural language processing (2016) 0.00
    0.0028703054 = product of:
      0.005740611 = sum of:
        0.005740611 = product of:
          0.011481222 = sum of:
            0.011481222 = weight(_text_:a in 3205) [ClassicSimilarity], result of:
              0.011481222 = score(doc=3205,freq=16.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.2161963 = fieldWeight in 3205, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3205)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The goal of Open Knowledge Maps is to create a visual interface to the world's scientific knowledge. The base for this visual interface consists of so-called knowledge maps, which enable the exploration of existing knowledge and the discovery of new knowledge. Our open source knowledge mapping software applies a mixture of summarization techniques and similarity measures on article metadata, which are iteratively chained together. After processing, the representation is saved in a database for use in a web visualization. In the future, we want to create a space for collective knowledge mapping that brings together individuals and communities involved in exploration and discovery. We want to enable people to guide each other in their discovery by collaboratively annotating and modifying the automatically created maps.
    Type
    a
  5. Maaten, L. van den; Hinton, G.: Visualizing non-metric similarities in multiple maps (2012) 0.00
    0.0028703054 = product of:
      0.005740611 = sum of:
        0.005740611 = product of:
          0.011481222 = sum of:
            0.011481222 = weight(_text_:a in 3884) [ClassicSimilarity], result of:
              0.011481222 = score(doc=3884,freq=16.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.2161963 = fieldWeight in 3884, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3884)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Techniques for multidimensional scaling visualize objects as points in a low-dimensional metric map. As a result, the visualizations are subject to the fundamental limitations of metric spaces. These limitations prevent multidimensional scaling from faithfully representing non-metric similarity data such as word associations or event co-occurrences. In particular, multidimensional scaling cannot faithfully represent intransitive pairwise similarities in a visualization, and it cannot faithfully visualize "central" objects. In this paper, we present an extension of a recently proposed multidimensional scaling technique called t-SNE. The extension aims to address the problems of traditional multidimensional scaling techniques when these techniques are used to visualize non-metric similarities. The new technique, called multiple maps t-SNE, alleviates these problems by constructing a collection of maps that reveal complementary structure in the similarity data. We apply multiple maps t-SNE to a large data set of word association data and to a data set of NIPS co-authorships, demonstrating its ability to successfully visualize non-metric similarities.
    Type
    a
  6. Seeliger, F.: ¬A tool for systematic visualization of controlled descriptors and their relation to others as a rich context for a discovery system (2015) 0.00
    0.0026202186 = product of:
      0.005240437 = sum of:
        0.005240437 = product of:
          0.010480874 = sum of:
            0.010480874 = weight(_text_:a in 2547) [ClassicSimilarity], result of:
              0.010480874 = score(doc=2547,freq=30.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.19735932 = fieldWeight in 2547, product of:
                  5.477226 = tf(freq=30.0), with freq of:
                    30.0 = termFreq=30.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2547)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The discovery service (a search engine and service called WILBERT) used at our library at the Technical University of Applied Sciences Wildau (TUAS Wildau) is comprised of more than 8 million items. If we were to record all licensed publications in this tool to a higher level of articles, including their bibliographic records and full texts, we would have a holding estimated at a hundred million documents. A lot of features, such as ranking, autocompletion, multi-faceted classification, refining opportunities reduce the number of hits. However, it is not enough to give intuitive support for a systematic overview of topics related to documents in the library. John Naisbitt once said: "We are drowning in information, but starving for knowledge." This quote is still very true today. Two years ago, we started to develop micro thesauri for MINT topics in order to develop an advanced indexing of the library stock. We use iQvoc as a vocabulary management system to create the thesaurus. It provides an easy-to-use browser interface that builds a SKOS thesaurus in the background. The purpose of this is to integrate the thesauri in WILBERT in order to offer a better subject-related search. This approach especially supports first-year students by giving them the possibility to browse through a hierarchical alignment of a subject, for instance, logistics or computer science, and thereby discover how the terms are related. It also supports the students with an insight into established abbreviations and alternative labels. Students at the TUAS Wildau were involved in the developmental process of the software regarding the interface and functionality of iQvoc. The first steps have been taken and involve the inclusion of 3000 terms in our discovery tool WILBERT.
    Type
    a
  7. Wu, Y.; Bai, R.: ¬An event relationship model for knowledge organization and visualization (2017) 0.00
    0.0024857575 = product of:
      0.004971515 = sum of:
        0.004971515 = product of:
          0.00994303 = sum of:
            0.00994303 = weight(_text_:a in 3867) [ClassicSimilarity], result of:
              0.00994303 = score(doc=3867,freq=12.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.18723148 = fieldWeight in 3867, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3867)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    An event is a specific occurrence involving participants, which is a typed, n-ary association of entities or other events, each identified as a participant in a specific semantic role in the event (Pyysalo et al. 2012; Linguistic Data Consortium 2005). Event types may vary across domains. Representing relationships between events can facilitate the understanding of knowledge in complex systems (such as economic systems, human body, social systems). In the simplest form, an event can be represented as Entity A <Relation> Entity B. This paper evaluates several knowledge organization and visualization models and tools, such as concept maps (Cmap), topic maps (Ontopia), network analysis models (Gephi), and ontology (Protégé), then proposes an event relationship model that aims to integrate the strengths of these models, and can represent complex knowledge expressed in events and their relationships.
    Type
    a
  8. Braun, S.: Manifold: a custom analytics platform to visualize research impact (2015) 0.00
    0.002269176 = product of:
      0.004538352 = sum of:
        0.004538352 = product of:
          0.009076704 = sum of:
            0.009076704 = weight(_text_:a in 2906) [ClassicSimilarity], result of:
              0.009076704 = score(doc=2906,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.1709182 = fieldWeight in 2906, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2906)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The use of research impact metrics and analytics has become an integral component to many aspects of institutional assessment. Many platforms currently exist to provide such analytics, both proprietary and open source; however, the functionality of these systems may not always overlap to serve uniquely specific needs. In this paper, I describe a novel web-based platform, named Manifold, that I built to serve custom research impact assessment needs in the University of Minnesota Medical School. Built on a standard LAMP architecture, Manifold automatically pulls publication data for faculty from Scopus through APIs, calculates impact metrics through automated analytics, and dynamically generates report-like profiles that visualize those metrics. Work on this project has resulted in many lessons learned about challenges to sustainability and scalability in developing a system of such magnitude.
    Type
    a
  9. Lamb, I.; Larson, C.: Shining a light on scientific data : building a data catalog to foster data sharing and reuse (2016) 0.00
    0.002269176 = product of:
      0.004538352 = sum of:
        0.004538352 = product of:
          0.009076704 = sum of:
            0.009076704 = weight(_text_:a in 3195) [ClassicSimilarity], result of:
              0.009076704 = score(doc=3195,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.1709182 = fieldWeight in 3195, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3195)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The scientific community's growing eagerness to make research data available to the public provides libraries - with our expertise in metadata and discovery - an interesting new opportunity. This paper details the in-house creation of a "data catalog" which describes datasets ranging from population-level studies like the US Census to small, specialized datasets created by researchers at our own institution. Based on Symfony2 and Solr, the data catalog provides a powerful search interface to help researchers locate the data that can help them, and an administrative interface so librarians can add, edit, and manage metadata elements at will. This paper will outline the successes, failures, and total redos that culminated in the current manifestation of our data catalog.
    Type
    a
  10. Choi, I.: Visualizations of cross-cultural bibliographic classification : comparative studies of the Korean Decimal Classification and the Dewey Decimal Classification (2017) 0.00
    0.0020714647 = product of:
      0.0041429293 = sum of:
        0.0041429293 = product of:
          0.008285859 = sum of:
            0.008285859 = weight(_text_:a in 3869) [ClassicSimilarity], result of:
              0.008285859 = score(doc=3869,freq=12.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15602624 = fieldWeight in 3869, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3869)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The changes in KO systems induced by sociocultural influences may include those in both classificatory principles and cultural features. The proposed study will examine the Korean Decimal Classification (KDC)'s adaptation of the Dewey Decimal Classification (DDC) by comparing the two systems. This case manifests the sociocultural influences on KOSs in a cross-cultural context. Therefore, the study aims at an in-depth investigation of sociocultural influences by situating a KOS in a cross-cultural environment and examining the dynamics between two classification systems designed to organize information resources in two distinct sociocultural contexts. As a preceding stage of the comparison, the analysis was conducted on the changes that result from the meeting of different sociocultural feature in a descriptive method. The analysis aims to identify variations between the two schemes in comparison of the knowledge structures of the two classifications, in terms of the quantity of class numbers that represent concepts and their relationships in each of the individual main classes. The most effective analytic strategy to show the patterns of the comparison was visualizations of similarities and differences between the two systems. Increasing or decreasing tendencies in the class through various editions were analyzed. Comparing the compositions of the main classes and distributions of concepts in the KDC and DDC discloses the differences in their knowledge structures empirically. This phase of quantitative analysis and visualizing techniques generates empirical evidence leading to interpretation.
    Type
    a
  11. Hook, P.A.; Gantchev, A.: Using combined metadata sources to visualize a small library (OBL's English Language Books) (2017) 0.00
    0.0020714647 = product of:
      0.0041429293 = sum of:
        0.0041429293 = product of:
          0.008285859 = sum of:
            0.008285859 = weight(_text_:a in 3870) [ClassicSimilarity], result of:
              0.008285859 = score(doc=3870,freq=12.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15602624 = fieldWeight in 3870, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3870)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Data from multiple knowledge organization systems are combined to provide a global overview of the content holdings of a small personal library. Subject headings and classification data are used to effectively map the combined book and topic space of the library. While harvested and manipulated by hand, the work reveals issues and potential solutions when using automated techniques to produce topic maps of much larger libraries. The small library visualized consists of the thirty-nine, digital, English language books found in the Osama Bin Laden (OBL) compound in Abbottabad, Pakistan upon his death. As this list of books has garnered considerable media attention, it is worth providing a visual overview of the subject content of these books - some of which is not readily apparent from the titles. Metadata from subject headings and classification numbers was combined to create book-subject maps. Tree maps of the classification data were also produced. The books contain 328 subject headings. In order to enhance the base map with meaningful thematic overlay, library holding count data was also harvested (and aggregated from duplicates). This additional data revealed the relative scarcity or popularity of individual books.
    Type
    a
  12. Wattenberg, M.; Viégas, F.; Johnson, I.: How to use t-SNE effectively (2016) 0.00
    0.001913537 = product of:
      0.003827074 = sum of:
        0.003827074 = product of:
          0.007654148 = sum of:
            0.007654148 = weight(_text_:a in 3887) [ClassicSimilarity], result of:
              0.007654148 = score(doc=3887,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.14413087 = fieldWeight in 3887, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3887)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Although extremely useful for visualizing high-dimensional data, t-SNE plots can sometimes be mysterious or misleading. By exploring how it behaves in simple cases, we can learn to use it more effectively. We'll walk through a series of simple examples to illustrate what t-SNE diagrams can and cannot show. The t-SNE technique really is useful-but only if you know how to interpret it.
    Type
    a
  13. Cao, N.; Sun, J.; Lin, Y.-R.; Gotz, D.; Liu, S.; Qu, H.: FacetAtlas : Multifaceted visualization for rich text corpora (2010) 0.00
    0.0018909799 = product of:
      0.0037819599 = sum of:
        0.0037819599 = product of:
          0.0075639198 = sum of:
            0.0075639198 = weight(_text_:a in 3366) [ClassicSimilarity], result of:
              0.0075639198 = score(doc=3366,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.14243183 = fieldWeight in 3366, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3366)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Documents in rich text corpora usually contain multiple facets of information. For example, an article about a specific disease often consists of different facets such as symptom, treatment, cause, diagnosis, prognosis, and prevention. Thus, documents may have different relations based on different facets. Powerful search tools have been developed to help users locate lists of individual documents that are most related to specific keywords. However, there is a lack of effective analysis tools that reveal the multifaceted relations of documents within or cross the document clusters. In this paper, we present FacetAtlas, a multifaceted visualization technique for visually analyzing rich text corpora. FacetAtlas combines search technology with advanced visual analytical tools to convey both global and local patterns simultaneously. We describe several unique aspects of FacetAtlas, including (1) node cliques and multifaceted edges, (2) an optimized density map, and (3) automated opacity pattern enhancement for highlighting visual patterns, (4) interactive context switch between facets. In addition, we demonstrate the power of FacetAtlas through a case study that targets patient education in the health care domain. Our evaluation shows the benefits of this work, especially in support of complex multifaceted data analysis.
    Type
    a
  14. Xiaoyue M.; Cahier, J.-P.: Iconic categorization with knowledge-based "icon systems" can improve collaborative KM (2011) 0.00
    0.0014647468 = product of:
      0.0029294936 = sum of:
        0.0029294936 = product of:
          0.005858987 = sum of:
            0.005858987 = weight(_text_:a in 4837) [ClassicSimilarity], result of:
              0.005858987 = score(doc=4837,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.11032722 = fieldWeight in 4837, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4837)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Icon system could represent an efficient solution for collective iconic categorization of knowledge by providing graphical interpretation. Their pictorial characters assist visualizing the structure of text to become more understandable beyond vocabulary obstacle. In this paper we are proposing a Knowledge Engineering (KM) based iconic representation approach. We assume that these systematic icons improve collective knowledge management. Meanwhile, text (constructed under our knowledge management model - Hypertopic) helps to reduce the diversity of graphical understanding belonging to different users. This "position paper" also prepares to demonstrate our hypothesis by an "iconic social tagging" experiment which is to be accomplished in 2011 with UTT students. We describe the "socio semantic web" information portal involved in this project, and a part of the icons already designed for this experiment in Sustainability field. We have reviewed existing theoretical works on icons from various origins, which can be used to lay the foundation of robust "icons systems".
    Type
    a
  15. Maaten, L. van den: Accelerating t-SNE using Tree-Based Algorithms (2014) 0.00
    0.0011839407 = product of:
      0.0023678814 = sum of:
        0.0023678814 = product of:
          0.0047357627 = sum of:
            0.0047357627 = weight(_text_:a in 3886) [ClassicSimilarity], result of:
              0.0047357627 = score(doc=3886,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.089176424 = fieldWeight in 3886, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3886)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  16. Jaklitsch, M.: Informationsvisualisierung am Beispiel des Begriffs Informationskompetenz : eine szientometrische Untersuchung unter Verwendung von BibExcel und VOSviewer (2016) 0.00
    0.0010148063 = product of:
      0.0020296127 = sum of:
        0.0020296127 = product of:
          0.0040592253 = sum of:
            0.0040592253 = weight(_text_:a in 3067) [ClassicSimilarity], result of:
              0.0040592253 = score(doc=3067,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.07643694 = fieldWeight in 3067, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3067)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a