Search (60 results, page 3 of 3)

  • × theme_ss:"Visualisierung"
  • × year_i:[2010 TO 2020}
  1. Bornmann, L.; Haunschild, R.: Overlay maps based on Mendeley data : the use of altmetrics for readership networks (2016) 0.00
    0.0036413912 = product of:
      0.014565565 = sum of:
        0.014565565 = weight(_text_:information in 3230) [ClassicSimilarity], result of:
          0.014565565 = score(doc=3230,freq=4.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.16457605 = fieldWeight in 3230, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=3230)
      0.25 = coord(1/4)
    
    Abstract
    Visualization of scientific results using networks has become popular in scientometric research. We provide base maps for Mendeley reader count data using the publication year 2012 from the Web of Science data. Example networks are shown and explained. The reader can use our base maps to visualize other results with the VOSViewer. The proposed overlay maps are able to show the impact of publications in terms of readership data. The advantage of using our base maps is that it is not necessary for the user to produce a network based on all data (e.g., from 1 year), but can collect the Mendeley data for a single institution (or journals, topics) and can match them with our already produced information. Generation of such large-scale networks is still a demanding task despite the available computer power and digital data availability. Therefore, it is very useful to have base maps and create the network with the overlay technique.
    Source
    Journal of the Association for Information Science and Technology. 67(2016) no.12, S.3064-3072
  2. Rohner, M.: Betrachtung der Data Visualization Literacy in der angestrebten Schweizer Informationsgesellschaft (2018) 0.00
    0.0036413912 = product of:
      0.014565565 = sum of:
        0.014565565 = weight(_text_:information in 4585) [ClassicSimilarity], result of:
          0.014565565 = score(doc=4585,freq=4.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.16457605 = fieldWeight in 4585, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=4585)
      0.25 = coord(1/4)
    
    Abstract
    Datenvisualisierungen sind ein wichtiges Werkzeug, um Inhalte und Muster in Datensätzen zu erkennen und ermöglichen so auch Laien den Zugang zu der Information, die in Datensätzen steckt. Data Visualization Literacy ist die Kompetenz, Datenvisualisierungen zu lesen, zu verstehen, zu hinterfragen und herzustellen. Data Visulaization Literacy ist daher eine wichtige Kompetenz der Informationsgesellschaft. Im Auftrag des Bundesrates hat das Bundesamt für Kommunikation BAKOM die Strategie "Digitale Schweiz" entwickelt. Die Strategie zeigt auf, wie die fortschreitende Digitalisierung genutzt und die Schweiz zu einer Informationsgesellschaft entwickelt werden soll. In der vorliegenden Arbeit wird untersucht, inwiefern die Strategie "Digitale Schweiz" die Förderung von Data Visualization Literacy in der Bevölkerung unterstützt. Dazu werden die Kompetenzen der Data Visualization Literacy ermittelt, Kompetenzstellen innerhalb des Bildungssystems benannt und die Massnahmen der Strategie in Bezug auf Data Visualization Literacy überprüft.
    Content
    Diese Publikation entstand im Rahmen einer Thesis zum Master of Science FHO in Business Administration, Major Information and Data Management.
  3. Cobo, M.J.; López-Herrera, A.G.; Herrera-Viedma, E.; Herrera, F.: Science mapping software tools : review, analysis, and cooperative study among tools (2011) 0.00
    0.0034331365 = product of:
      0.013732546 = sum of:
        0.013732546 = weight(_text_:information in 4486) [ClassicSimilarity], result of:
          0.013732546 = score(doc=4486,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.1551638 = fieldWeight in 4486, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=4486)
      0.25 = coord(1/4)
    
    Source
    Journal of the American Society for Information Science and Technology. 62(2011) no.7, S.1382-1402
  4. Wu, I.-C.; Vakkari, P.: Supporting navigation in Wikipedia by information visualization : extended evaluation measures (2014) 0.00
    0.0034331365 = product of:
      0.013732546 = sum of:
        0.013732546 = weight(_text_:information in 1797) [ClassicSimilarity], result of:
          0.013732546 = score(doc=1797,freq=8.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.1551638 = fieldWeight in 1797, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=1797)
      0.25 = coord(1/4)
    
    Abstract
    Purpose - The authors introduce two semantics-based navigation applications that facilitate information-seeking activities in internal link-based web sites in Wikipedia. These applications aim to help users find concepts within a topic and related articles on a given topic quickly and then gain topical knowledge from internal link-based encyclopedia web sites. The paper aims to discuss these issues. Design/methodology/approach - The WNavis application consists of three information visualization (IV) tools which are a topic network, a hierarchy topic tree and summaries for topics. The WikiMap application consists of a topic network. The goal of the topic network and topic tree tools is to help users to find the major concepts of a topic and identify relationships between these major concepts easily. In addition, in order to locate specific information and enable users to explore and read topic-related articles quickly, the topic tree and summaries for topics tools support users to gain topical knowledge quickly. The authors then apply the k-clique of cohesive indicator to analyze the sub topics of the seed query and find out the best clustering results via the cosine measure. The authors utilize four metrics, which are correctness, time cost, usage behaviors, and satisfaction, to evaluate the three interfaces. These metrics measure both the outputs and outcomes of applications. As a baseline system for evaluation the authors used a traditional Wikipedia interface. For the evaluation, the authors used an experimental user study with 30 participants.
  5. Zhang, J.; Zhao, Y.: ¬A user term visualization analysis based on a social question and answer log (2013) 0.00
    0.0030344925 = product of:
      0.01213797 = sum of:
        0.01213797 = weight(_text_:information in 2715) [ClassicSimilarity], result of:
          0.01213797 = score(doc=2715,freq=4.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.13714671 = fieldWeight in 2715, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2715)
      0.25 = coord(1/4)
    
    Abstract
    The authors of this paper investigate terms of consumers' diabetes based on a log from the Yahoo!Answers social question and answers (Q&A) forum, ascertain characteristics and relationships among terms related to diabetes from the consumers' perspective, and reveal users' diabetes information seeking patterns. In this study, the log analysis method, data coding method, and visualization multiple-dimensional scaling analysis method were used for analysis. The visual analyses were conducted at two levels: terms analysis within a category and category analysis among the categories in the schema. The findings show that the average number of words per question was 128.63, the average number of sentences per question was 8.23, the average number of words per response was 254.83, and the average number of sentences per response was 16.01. There were 12 categories (Cause & Pathophysiology, Sign & Symptom, Diagnosis & Test, Organ & Body Part, Complication & Related Disease, Medication, Treatment, Education & Info Resource, Affect, Social & Culture, Lifestyle, and Nutrient) in the diabetes related schema which emerged from the data coding analysis. The analyses at the two levels show that terms and categories were clustered and patterns were revealed. Future research directions are also included.
    Source
    Information processing and management. 49(2013) no.5, S.1019-1048
  6. Zhang, Y.; Zhang, G.; Zhu, D.; Lu, J.: Scientific evolutionary pathways : identifying and visualizing relationships for scientific topics (2017) 0.00
    0.0030344925 = product of:
      0.01213797 = sum of:
        0.01213797 = weight(_text_:information in 3758) [ClassicSimilarity], result of:
          0.01213797 = score(doc=3758,freq=4.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.13714671 = fieldWeight in 3758, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3758)
      0.25 = coord(1/4)
    
    Abstract
    Whereas traditional science maps emphasize citation statistics and static relationships, this paper presents a term-based method to identify and visualize the evolutionary pathways of scientific topics in a series of time slices. First, we create a data preprocessing model for accurate term cleaning, consolidating, and clustering. Then we construct a simulated data streaming function and introduce a learning process to train a relationship identification function to adapt to changing environments in real time, where relationships of topic evolution, fusion, death, and novelty are identified. The main result of the method is a map of scientific evolutionary pathways. The visual routines provide a way to indicate the interactions among scientific subjects and a version in a series of time slices helps further illustrate such evolutionary pathways in detail. The detailed outline offers sufficient statistical information to delve into scientific topics and routines and then helps address meaningful insights with the assistance of expert knowledge. This empirical study focuses on scientific proposals granted by the United States National Science Foundation, and demonstrates the feasibility and reliability. Our method could be widely applied to a range of science, technology, and innovation policy research, and offer insight into the evolutionary pathways of scientific activities.
    Source
    Journal of the Association for Information Science and Technology. 68(2017) no.8, S.1925-1939
  7. Rafols, I.; Porter, A.L.; Leydesdorff, L.: Science overlay maps : a new tool for research policy and library management (2010) 0.00
    0.0025748524 = product of:
      0.01029941 = sum of:
        0.01029941 = weight(_text_:information in 3987) [ClassicSimilarity], result of:
          0.01029941 = score(doc=3987,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.116372846 = fieldWeight in 3987, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=3987)
      0.25 = coord(1/4)
    
    Source
    Journal of the American Society for Information Science and Technology. 61(2010) no.9, S.1871-1887
  8. Brockelmann, M.; Wolff, C.: 3D-Visualisierungen : Potenziale in Forschung und Lehre im Kontext von Informationswissenschaft und Medieninformatik (2013) 0.00
    0.0025748524 = product of:
      0.01029941 = sum of:
        0.01029941 = weight(_text_:information in 1022) [ClassicSimilarity], result of:
          0.01029941 = score(doc=1022,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.116372846 = fieldWeight in 1022, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=1022)
      0.25 = coord(1/4)
    
    Source
    Information - Wissenschaft und Praxis. 64(2013) H.4, S.209-213
  9. Soylu, A.; Giese, M.; Jimenez-Ruiz, E.; Kharlamov, E.; Zheleznyakov, D.; Horrocks, I.: Towards exploiting query history for adaptive ontology-based visual query formulation (2014) 0.00
    0.0025748524 = product of:
      0.01029941 = sum of:
        0.01029941 = weight(_text_:information in 1576) [ClassicSimilarity], result of:
          0.01029941 = score(doc=1576,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.116372846 = fieldWeight in 1576, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=1576)
      0.25 = coord(1/4)
    
    Series
    Communications in computer and information science; 478
  10. Jaklitsch, M.: Informationsvisualisierung am Beispiel des Begriffs Informationskompetenz : eine szientometrische Untersuchung unter Verwendung von BibExcel und VOSviewer (2016) 0.00
    0.0025748524 = product of:
      0.01029941 = sum of:
        0.01029941 = weight(_text_:information in 3067) [ClassicSimilarity], result of:
          0.01029941 = score(doc=3067,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.116372846 = fieldWeight in 3067, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=3067)
      0.25 = coord(1/4)
    
    Source
    Young information scientists. 1(2016), S.31-43
  11. Maas, J.F.: SWD-Explorer : Design und Implementation eines Software-Tools zur erweiterten Suche und grafischen Navigation in der Schlagwortnormdatei (2010) 0.00
    0.0021457102 = product of:
      0.008582841 = sum of:
        0.008582841 = weight(_text_:information in 4035) [ClassicSimilarity], result of:
          0.008582841 = score(doc=4035,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.09697737 = fieldWeight in 4035, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4035)
      0.25 = coord(1/4)
    
    Abstract
    Die Schlagwortnormdatei (SWD) stellt als kooperativ erstelltes, kontrolliertes Vokabular ein aus dem deutschsprachigen Raum nicht mehr wegzudenkendes Mittel zur Verschlagwortung von Medien dar. Die SWD dient primär der Vereinheitlichung der Verschlagwortung. Darüber hinaus sind in der Struktur der SWD Relationen zwischen Schlagwörtern definiert, die eine gut vorbereitete Suche stark erleichtern können. Beispiel für solche Relationen sind die Unterbegriff-/Oberbegriffrelationen (Hyponym/Hyperonym) oder die Relation der Ähnlichkeit von Begriffen. Diese Arbeit unternimmt den Versuch, durch die Erstellung eines Such- und Visualisierungstools den Umgang mit der SWD zu erleichtern. Im Fokus der Arbeit steht dabei zum einen die Aufgabe des Fachreferenten, ein Medium geeignet zu verschlagworten. Diese Aufgabe soll durch die Optimierung der technischen Suchmöglichkeiten mit Hilfe von Schlagwörtern geschehen, z.B. durch die Suche mit Hilfe Regulärer Ausdrücke oder durch die Suche entlang der hierarchischen Relationen. Zum anderen sind die beschriebenen Relationen innerhalb der SWD oft unsauber spezifiziert, was ein negativer Seiteneffekt der interdisziplinären und kooperativen Erstellung der SWD ist. Es wird gezeigt, dass durch geeignete Visualisierung viele Fehler schnell auffindbar und korrigierbar sind, was die Aufgabe der Datenpflege um ein Vielfaches vereinfacht. Diese Veröffentlichung geht zurück auf eine Master-Arbeit im postgradualen Fernstudiengang Master of Arts (Library and Information Science) an der Humboldt-Universität zu Berlin.
  12. Xiaoyue M.; Cahier, J.-P.: Iconic categorization with knowledge-based "icon systems" can improve collaborative KM (2011) 0.00
    0.0021457102 = product of:
      0.008582841 = sum of:
        0.008582841 = weight(_text_:information in 4837) [ClassicSimilarity], result of:
          0.008582841 = score(doc=4837,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.09697737 = fieldWeight in 4837, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4837)
      0.25 = coord(1/4)
    
    Abstract
    Icon system could represent an efficient solution for collective iconic categorization of knowledge by providing graphical interpretation. Their pictorial characters assist visualizing the structure of text to become more understandable beyond vocabulary obstacle. In this paper we are proposing a Knowledge Engineering (KM) based iconic representation approach. We assume that these systematic icons improve collective knowledge management. Meanwhile, text (constructed under our knowledge management model - Hypertopic) helps to reduce the diversity of graphical understanding belonging to different users. This "position paper" also prepares to demonstrate our hypothesis by an "iconic social tagging" experiment which is to be accomplished in 2011 with UTT students. We describe the "socio semantic web" information portal involved in this project, and a part of the icons already designed for this experiment in Sustainability field. We have reviewed existing theoretical works on icons from various origins, which can be used to lay the foundation of robust "icons systems".
  13. Darányi, S.; Wittek, P.: Demonstrating conceptual dynamics in an evolving text collection (2013) 0.00
    0.0021457102 = product of:
      0.008582841 = sum of:
        0.008582841 = weight(_text_:information in 1137) [ClassicSimilarity], result of:
          0.008582841 = score(doc=1137,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.09697737 = fieldWeight in 1137, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1137)
      0.25 = coord(1/4)
    
    Source
    Journal of the American Society for Information Science and Technology. 64(2013) no.12, S.2564-2572
  14. Chen, R.H.-G.; Chen, C.-M.: Visualizing the world's scientific publications (2016) 0.00
    0.0021457102 = product of:
      0.008582841 = sum of:
        0.008582841 = weight(_text_:information in 3124) [ClassicSimilarity], result of:
          0.008582841 = score(doc=3124,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.09697737 = fieldWeight in 3124, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3124)
      0.25 = coord(1/4)
    
    Source
    Journal of the Association for Information Science and Technology. 67(2016) no.10, S.2477-2488
  15. Aletras, N.; Baldwin, T.; Lau, J.H.; Stevenson, M.: Evaluating topic representations for exploring document collections (2017) 0.00
    0.0021457102 = product of:
      0.008582841 = sum of:
        0.008582841 = weight(_text_:information in 3325) [ClassicSimilarity], result of:
          0.008582841 = score(doc=3325,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.09697737 = fieldWeight in 3325, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3325)
      0.25 = coord(1/4)
    
    Source
    Journal of the Association for Information Science and Technology. 68(2017) no.1, S.154-167
  16. Cao, N.; Sun, J.; Lin, Y.-R.; Gotz, D.; Liu, S.; Qu, H.: FacetAtlas : Multifaceted visualization for rich text corpora (2010) 0.00
    0.0021457102 = product of:
      0.008582841 = sum of:
        0.008582841 = weight(_text_:information in 3366) [ClassicSimilarity], result of:
          0.008582841 = score(doc=3366,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.09697737 = fieldWeight in 3366, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3366)
      0.25 = coord(1/4)
    
    Abstract
    Documents in rich text corpora usually contain multiple facets of information. For example, an article about a specific disease often consists of different facets such as symptom, treatment, cause, diagnosis, prognosis, and prevention. Thus, documents may have different relations based on different facets. Powerful search tools have been developed to help users locate lists of individual documents that are most related to specific keywords. However, there is a lack of effective analysis tools that reveal the multifaceted relations of documents within or cross the document clusters. In this paper, we present FacetAtlas, a multifaceted visualization technique for visually analyzing rich text corpora. FacetAtlas combines search technology with advanced visual analytical tools to convey both global and local patterns simultaneously. We describe several unique aspects of FacetAtlas, including (1) node cliques and multifaceted edges, (2) an optimized density map, and (3) automated opacity pattern enhancement for highlighting visual patterns, (4) interactive context switch between facets. In addition, we demonstrate the power of FacetAtlas through a case study that targets patient education in the health care domain. Our evaluation shows the benefits of this work, especially in support of complex multifaceted data analysis.
  17. Wen, B.; Horlings, E.; Zouwen, M. van der; Besselaar, P. van den: Mapping science through bibliometric triangulation : an experimental approach applied to water research (2017) 0.00
    0.0021457102 = product of:
      0.008582841 = sum of:
        0.008582841 = weight(_text_:information in 3437) [ClassicSimilarity], result of:
          0.008582841 = score(doc=3437,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.09697737 = fieldWeight in 3437, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3437)
      0.25 = coord(1/4)
    
    Source
    Journal of the Association for Information Science and Technology. 68(2017) no.3, S.724-738
  18. Hiniker, A.; Hong, S.R.; Kim, Y.-S.; Chen, N.-C.; West, J.D.; Aragon, C.: Toward the operationalization of visual metaphor (2017) 0.00
    0.0021457102 = product of:
      0.008582841 = sum of:
        0.008582841 = weight(_text_:information in 3917) [ClassicSimilarity], result of:
          0.008582841 = score(doc=3917,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.09697737 = fieldWeight in 3917, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3917)
      0.25 = coord(1/4)
    
    Source
    Journal of the Association for Information Science and Technology. 68(2017) no.10, S.2338-2349
  19. Seeliger, F.: ¬A tool for systematic visualization of controlled descriptors and their relation to others as a rich context for a discovery system (2015) 0.00
    0.0017165683 = product of:
      0.006866273 = sum of:
        0.006866273 = weight(_text_:information in 2547) [ClassicSimilarity], result of:
          0.006866273 = score(doc=2547,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.0775819 = fieldWeight in 2547, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=2547)
      0.25 = coord(1/4)
    
    Abstract
    The discovery service (a search engine and service called WILBERT) used at our library at the Technical University of Applied Sciences Wildau (TUAS Wildau) is comprised of more than 8 million items. If we were to record all licensed publications in this tool to a higher level of articles, including their bibliographic records and full texts, we would have a holding estimated at a hundred million documents. A lot of features, such as ranking, autocompletion, multi-faceted classification, refining opportunities reduce the number of hits. However, it is not enough to give intuitive support for a systematic overview of topics related to documents in the library. John Naisbitt once said: "We are drowning in information, but starving for knowledge." This quote is still very true today. Two years ago, we started to develop micro thesauri for MINT topics in order to develop an advanced indexing of the library stock. We use iQvoc as a vocabulary management system to create the thesaurus. It provides an easy-to-use browser interface that builds a SKOS thesaurus in the background. The purpose of this is to integrate the thesauri in WILBERT in order to offer a better subject-related search. This approach especially supports first-year students by giving them the possibility to browse through a hierarchical alignment of a subject, for instance, logistics or computer science, and thereby discover how the terms are related. It also supports the students with an insight into established abbreviations and alternative labels. Students at the TUAS Wildau were involved in the developmental process of the software regarding the interface and functionality of iQvoc. The first steps have been taken and involve the inclusion of 3000 terms in our discovery tool WILBERT.
  20. Representation in scientific practice revisited (2014) 0.00
    0.0017165683 = product of:
      0.006866273 = sum of:
        0.006866273 = weight(_text_:information in 3543) [ClassicSimilarity], result of:
          0.006866273 = score(doc=3543,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.0775819 = fieldWeight in 3543, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=3543)
      0.25 = coord(1/4)
    
    Abstract
    Representation in Scientific Practice, published by the MIT Press in 1990, helped coalesce a long-standing interest in scientific visualization among historians, philosophers, and sociologists of science and remains a touchstone for current investigations in science and technology studies. This volume revisits the topic, taking into account both the changing conceptual landscape of STS and the emergence of new imaging technologies in scientific practice. It offers cutting-edge research on a broad array of fields that study information as well as short reflections on the evolution of the field by leading scholars, including some of the contributors to the 1990 volume. The essays consider the ways in which viewing experiences are crafted in the digital era; the embodied nature of work with digital technologies; the constitutive role of materials and technologies -- from chalkboards to brain scans -- in the production of new scientific knowledge; the metaphors and images mobilized by communities of practice; and the status and significance of scientific imagery in professional and popular culture. ContributorsMorana Alac, Michael Barany, Anne Beaulieu, Annamaria Carusi, Catelijne Coopmans, Lorraine Daston, Sarah de Rijcke, Joseph Dumit, Emma Frow, Yann Giraud, Aud Sissel Hoel, Martin Kemp, Bruno Latour, John Law, Michael Lynch, Donald MacKenzie, Cyrus Mody, Natasha Myers, Rachel Prentice, Arie Rip, Martin Ruivenkamp, Lucy Suchman, Janet Vertesi, Steve Woolgar

Languages

  • e 53
  • d 6
  • a 1
  • More… Less…

Types

  • a 54
  • el 9
  • x 3
  • m 2
  • r 1
  • s 1
  • More… Less…