Search (62 results, page 3 of 4)

  • × theme_ss:"Visualisierung"
  1. Zhu, B.; Chen, H.: Information visualization (2004) 0.01
    0.0075393203 = product of:
      0.030157281 = sum of:
        0.030157281 = weight(_text_:digital in 4276) [ClassicSimilarity], result of:
          0.030157281 = score(doc=4276,freq=2.0), product of:
            0.19770671 = queryWeight, product of:
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.050121464 = queryNorm
            0.15253544 = fieldWeight in 4276, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.02734375 = fieldNorm(doc=4276)
      0.25 = coord(1/4)
    
    Abstract
    Advanced technology has resulted in the generation of about one million terabytes of information every year. Ninety-reine percent of this is available in digital format (Keim, 2001). More information will be generated in the next three years than was created during all of previous human history (Keim, 2001). Collecting information is no longer a problem, but extracting value from information collections has become progressively more difficult. Various search engines have been developed to make it easier to locate information of interest, but these work well only for a person who has a specific goal and who understands what and how information is stored. This usually is not the Gase. Visualization was commonly thought of in terms of representing human mental processes (MacEachren, 1991; Miller, 1984). The concept is now associated with the amplification of these mental processes (Card, Mackinlay, & Shneiderman, 1999). Human eyes can process visual cues rapidly, whereas advanced information analysis techniques transform the computer into a powerful means of managing digitized information. Visualization offers a link between these two potent systems, the human eye and the computer (Gershon, Eick, & Card, 1998), helping to identify patterns and to extract insights from large amounts of information. The identification of patterns is important because it may lead to a scientific discovery, an interpretation of clues to solve a crime, the prediction of catastrophic weather, a successful financial investment, or a better understanding of human behavior in a computermediated environment. Visualization technology shows considerable promise for increasing the value of large-scale collections of information, as evidenced by several commercial applications of TreeMap (e.g., http://www.smartmoney.com) and Hyperbolic tree (e.g., http://www.inxight.com) to visualize large-scale hierarchical structures. Although the proliferation of visualization technologies dates from the 1990s where sophisticated hardware and software made increasingly faster generation of graphical objects possible, the role of visual aids in facilitating the construction of mental images has a long history. Visualization has been used to communicate ideas, to monitor trends implicit in data, and to explore large volumes of data for hypothesis generation. Imagine traveling to a strange place without a map, having to memorize physical and chemical properties of an element without Mendeleyev's periodic table, trying to understand the stock market without statistical diagrams, or browsing a collection of documents without interactive visual aids. A collection of information can lose its value simply because of the effort required for exhaustive exploration. Such frustrations can be overcome by visualization.
  2. Braun, S.: Manifold: a custom analytics platform to visualize research impact (2015) 0.01
    0.0073997467 = product of:
      0.029598987 = sum of:
        0.029598987 = product of:
          0.059197973 = sum of:
            0.059197973 = weight(_text_:project in 2906) [ClassicSimilarity], result of:
              0.059197973 = score(doc=2906,freq=2.0), product of:
                0.21156175 = queryWeight, product of:
                  4.220981 = idf(docFreq=1764, maxDocs=44218)
                  0.050121464 = queryNorm
                0.27981415 = fieldWeight in 2906, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.220981 = idf(docFreq=1764, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2906)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    The use of research impact metrics and analytics has become an integral component to many aspects of institutional assessment. Many platforms currently exist to provide such analytics, both proprietary and open source; however, the functionality of these systems may not always overlap to serve uniquely specific needs. In this paper, I describe a novel web-based platform, named Manifold, that I built to serve custom research impact assessment needs in the University of Minnesota Medical School. Built on a standard LAMP architecture, Manifold automatically pulls publication data for faculty from Scopus through APIs, calculates impact metrics through automated analytics, and dynamically generates report-like profiles that visualize those metrics. Work on this project has resulted in many lessons learned about challenges to sustainability and scalability in developing a system of such magnitude.
  3. Börner, K.: Atlas of knowledge : anyone can map (2015) 0.01
    0.007202696 = product of:
      0.028810784 = sum of:
        0.028810784 = product of:
          0.05762157 = sum of:
            0.05762157 = weight(_text_:22 in 3355) [ClassicSimilarity], result of:
              0.05762157 = score(doc=3355,freq=4.0), product of:
                0.17551683 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050121464 = queryNorm
                0.32829654 = fieldWeight in 3355, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3355)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    22. 1.2017 16:54:03
    22. 1.2017 17:10:56
  4. Lin, X.; Bui, Y.: Information visualization (2009) 0.01
    0.006699973 = product of:
      0.026799891 = sum of:
        0.026799891 = weight(_text_:library in 3818) [ClassicSimilarity], result of:
          0.026799891 = score(doc=3818,freq=2.0), product of:
            0.1317883 = queryWeight, product of:
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.050121464 = queryNorm
            0.20335563 = fieldWeight in 3818, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3818)
      0.25 = coord(1/4)
    
    Source
    Encyclopedia of library and information sciences. 3rd ed. Ed.: M.J. Bates
  5. Jäger-Dengler-Harles, I.: Informationsvisualisierung und Retrieval (2015) 0.01
    0.006699973 = product of:
      0.026799891 = sum of:
        0.026799891 = weight(_text_:library in 2615) [ClassicSimilarity], result of:
          0.026799891 = score(doc=2615,freq=2.0), product of:
            0.1317883 = queryWeight, product of:
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.050121464 = queryNorm
            0.20335563 = fieldWeight in 2615, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2615)
      0.25 = coord(1/4)
    
    Abstract
    Ausgewählte Visualisierungsanwendungen der jüngeren Vergangenheit, die den Retrievalprozess betreffen, werden vorgestellt. Die Einsatzszenarien reichen von mobilen kleinformatigen Anwendungen bis zu großformatigen Darstellungen auf hochauflösenden Bildschirmen, von integrativen Arbeitsplätzen für den einzelnen Nutzer bis zur Nutzung interaktiver Oberflächen für das kollaborative Retrieval. Das Konzept der Blended Library wird erläutert. Perspektivische Überlegungen zu zukünftigen Entwicklungsschritten von Bibliothekskatalogen sowie zum Einfluss von Visualisierungsanwendungen auf die Informationspraxis werden angestellt.
  6. Salaba, A.; Mercun, T.; Aalberg, T.: Complexity of work families and entity-based visualization displays (2018) 0.01
    0.006699973 = product of:
      0.026799891 = sum of:
        0.026799891 = weight(_text_:library in 5184) [ClassicSimilarity], result of:
          0.026799891 = score(doc=5184,freq=2.0), product of:
            0.1317883 = queryWeight, product of:
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.050121464 = queryNorm
            0.20335563 = fieldWeight in 5184, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5184)
      0.25 = coord(1/4)
    
    Object
    IFLA Library Reference Model
  7. Seeliger, F.: ¬A tool for systematic visualization of controlled descriptors and their relation to others as a rich context for a discovery system (2015) 0.01
    0.0066312538 = product of:
      0.026525015 = sum of:
        0.026525015 = weight(_text_:library in 2547) [ClassicSimilarity], result of:
          0.026525015 = score(doc=2547,freq=6.0), product of:
            0.1317883 = queryWeight, product of:
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.050121464 = queryNorm
            0.20126988 = fieldWeight in 2547, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.03125 = fieldNorm(doc=2547)
      0.25 = coord(1/4)
    
    Abstract
    The discovery service (a search engine and service called WILBERT) used at our library at the Technical University of Applied Sciences Wildau (TUAS Wildau) is comprised of more than 8 million items. If we were to record all licensed publications in this tool to a higher level of articles, including their bibliographic records and full texts, we would have a holding estimated at a hundred million documents. A lot of features, such as ranking, autocompletion, multi-faceted classification, refining opportunities reduce the number of hits. However, it is not enough to give intuitive support for a systematic overview of topics related to documents in the library. John Naisbitt once said: "We are drowning in information, but starving for knowledge." This quote is still very true today. Two years ago, we started to develop micro thesauri for MINT topics in order to develop an advanced indexing of the library stock. We use iQvoc as a vocabulary management system to create the thesaurus. It provides an easy-to-use browser interface that builds a SKOS thesaurus in the background. The purpose of this is to integrate the thesauri in WILBERT in order to offer a better subject-related search. This approach especially supports first-year students by giving them the possibility to browse through a hierarchical alignment of a subject, for instance, logistics or computer science, and thereby discover how the terms are related. It also supports the students with an insight into established abbreviations and alternative labels. Students at the TUAS Wildau were involved in the developmental process of the software regarding the interface and functionality of iQvoc. The first steps have been taken and involve the inclusion of 3000 terms in our discovery tool WILBERT.
  8. Xiaoyue M.; Cahier, J.-P.: Iconic categorization with knowledge-based "icon systems" can improve collaborative KM (2011) 0.01
    0.0061664553 = product of:
      0.024665821 = sum of:
        0.024665821 = product of:
          0.049331643 = sum of:
            0.049331643 = weight(_text_:project in 4837) [ClassicSimilarity], result of:
              0.049331643 = score(doc=4837,freq=2.0), product of:
                0.21156175 = queryWeight, product of:
                  4.220981 = idf(docFreq=1764, maxDocs=44218)
                  0.050121464 = queryNorm
                0.23317845 = fieldWeight in 4837, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.220981 = idf(docFreq=1764, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4837)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    Icon system could represent an efficient solution for collective iconic categorization of knowledge by providing graphical interpretation. Their pictorial characters assist visualizing the structure of text to become more understandable beyond vocabulary obstacle. In this paper we are proposing a Knowledge Engineering (KM) based iconic representation approach. We assume that these systematic icons improve collective knowledge management. Meanwhile, text (constructed under our knowledge management model - Hypertopic) helps to reduce the diversity of graphical understanding belonging to different users. This "position paper" also prepares to demonstrate our hypothesis by an "iconic social tagging" experiment which is to be accomplished in 2011 with UTT students. We describe the "socio semantic web" information portal involved in this project, and a part of the icons already designed for this experiment in Sustainability field. We have reviewed existing theoretical works on icons from various origins, which can be used to lay the foundation of robust "icons systems".
  9. Ekström, B.: Trace data visualisation enquiry : a methodological coupling for studying information practices in relation to information systems (2022) 0.01
    0.0061664553 = product of:
      0.024665821 = sum of:
        0.024665821 = product of:
          0.049331643 = sum of:
            0.049331643 = weight(_text_:project in 687) [ClassicSimilarity], result of:
              0.049331643 = score(doc=687,freq=2.0), product of:
                0.21156175 = queryWeight, product of:
                  4.220981 = idf(docFreq=1764, maxDocs=44218)
                  0.050121464 = queryNorm
                0.23317845 = fieldWeight in 687, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.220981 = idf(docFreq=1764, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=687)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    Purpose The purpose of this paper is to examine whether and how a methodological coupling of visualisations of trace data and interview methods can be utilised for information practices studies. Design/methodology/approach Trace data visualisation enquiry is suggested as the coupling of visualising exported data from an information system and using these visualisations as basis for interview guides and elicitation in information practices research. The methodology is illustrated and applied through a small-scale empirical study of a citizen science project. Findings The study found that trace data visualisation enquiry enabled fine-grained investigations of temporal aspects of information practices and to compare and explore temporal and geographical aspects of practices. Moreover, the methodology made possible inquiries for understanding information practices through trace data that were discussed through elicitation with participants. The study also found that it can aid a researcher of gaining a simultaneous overarching and close picture of information practices, which can lead to theoretical and methodological implications for information practices research. Originality/value Trace data visualisation enquiry extends current methods for investigating information practices as it enables focus to be placed on the traces of practices as recorded through interactions with information systems and study participants' accounts of activities.
  10. Trunk, D.: Semantische Netze in Informationssystemen : Verbesserung der Suche durch Interaktion und Visualisierung (2005) 0.01
    0.0059419204 = product of:
      0.023767682 = sum of:
        0.023767682 = product of:
          0.047535364 = sum of:
            0.047535364 = weight(_text_:22 in 2500) [ClassicSimilarity], result of:
              0.047535364 = score(doc=2500,freq=2.0), product of:
                0.17551683 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050121464 = queryNorm
                0.2708308 = fieldWeight in 2500, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2500)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    30. 1.2007 18:22:41
  11. Yi, K.; Chan, L.M.: ¬A visualization software tool for Library of Congress Subject Headings (2008) 0.01
    0.0057428335 = product of:
      0.022971334 = sum of:
        0.022971334 = weight(_text_:library in 2503) [ClassicSimilarity], result of:
          0.022971334 = score(doc=2503,freq=2.0), product of:
            0.1317883 = queryWeight, product of:
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.050121464 = queryNorm
            0.17430481 = fieldWeight in 2503, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.046875 = fieldNorm(doc=2503)
      0.25 = coord(1/4)
    
  12. Rafols, I.; Porter, A.L.; Leydesdorff, L.: Science overlay maps : a new tool for research policy and library management (2010) 0.01
    0.0057428335 = product of:
      0.022971334 = sum of:
        0.022971334 = weight(_text_:library in 3987) [ClassicSimilarity], result of:
          0.022971334 = score(doc=3987,freq=2.0), product of:
            0.1317883 = queryWeight, product of:
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.050121464 = queryNorm
            0.17430481 = fieldWeight in 3987, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.046875 = fieldNorm(doc=3987)
      0.25 = coord(1/4)
    
  13. Thissen, F.: Screen-Design-Handbuch : Effektiv informieren und kommunizieren mit Multimedia (2001) 0.01
    0.005093075 = product of:
      0.0203723 = sum of:
        0.0203723 = product of:
          0.0407446 = sum of:
            0.0407446 = weight(_text_:22 in 1781) [ClassicSimilarity], result of:
              0.0407446 = score(doc=1781,freq=2.0), product of:
                0.17551683 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050121464 = queryNorm
                0.23214069 = fieldWeight in 1781, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1781)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    22. 3.2008 14:35:21
  14. Eito Brun, R.: Retrieval effectiveness in software repositories : from faceted classifications to software visualization techniques (2006) 0.00
    0.004785695 = product of:
      0.01914278 = sum of:
        0.01914278 = weight(_text_:library in 2515) [ClassicSimilarity], result of:
          0.01914278 = score(doc=2515,freq=2.0), product of:
            0.1317883 = queryWeight, product of:
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.050121464 = queryNorm
            0.14525402 = fieldWeight in 2515, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2515)
      0.25 = coord(1/4)
    
    Abstract
    The internal organization of large software projects requires an extraordinary effort in the development and maintenance of repositories made up of software artifacts (business components, data models, functional and technical documentation, etc.). During the software development process, different artifacts are created to help users in the transfer of knowledge and enable communication between workers and teams. The storage, maintenance and publication of these artifacts in knowledge bases - usually referred to as "software repositories" are a useful tool for future software development projects, as they contain the collective, learned experience of the teams and provide the basis to estimate and reuse the work completed in the past. Different techniques similar to those used by the library community have been used in the past to organize these software repositories and help users in the difficult task or identifying and retrieving artifacts (software and documentation). These techniques include software classification - with a special emphasis on faceted classifications, keyword-based retrieval and formal method techniques. The paper discusses the different knowledge organization techniques applied in these repositories to identify and retrieve software artifacts and ensure the reusability of software components and documentation at the different phases of the development process across different projects. An enumeration of the main approaches documented in specialized bibliography is provided.
  15. Hajdu Barat, A.: Human perception and knowledge organization : visual imagery (2007) 0.00
    0.004785695 = product of:
      0.01914278 = sum of:
        0.01914278 = weight(_text_:library in 2595) [ClassicSimilarity], result of:
          0.01914278 = score(doc=2595,freq=2.0), product of:
            0.1317883 = queryWeight, product of:
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.050121464 = queryNorm
            0.14525402 = fieldWeight in 2595, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2595)
      0.25 = coord(1/4)
    
    Source
    Library hi tech. 25(2007) no.3, S.338-351
  16. Maas, J.F.: SWD-Explorer : Design und Implementation eines Software-Tools zur erweiterten Suche und grafischen Navigation in der Schlagwortnormdatei (2010) 0.00
    0.004785695 = product of:
      0.01914278 = sum of:
        0.01914278 = weight(_text_:library in 4035) [ClassicSimilarity], result of:
          0.01914278 = score(doc=4035,freq=2.0), product of:
            0.1317883 = queryWeight, product of:
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.050121464 = queryNorm
            0.14525402 = fieldWeight in 4035, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4035)
      0.25 = coord(1/4)
    
    Abstract
    Die Schlagwortnormdatei (SWD) stellt als kooperativ erstelltes, kontrolliertes Vokabular ein aus dem deutschsprachigen Raum nicht mehr wegzudenkendes Mittel zur Verschlagwortung von Medien dar. Die SWD dient primär der Vereinheitlichung der Verschlagwortung. Darüber hinaus sind in der Struktur der SWD Relationen zwischen Schlagwörtern definiert, die eine gut vorbereitete Suche stark erleichtern können. Beispiel für solche Relationen sind die Unterbegriff-/Oberbegriffrelationen (Hyponym/Hyperonym) oder die Relation der Ähnlichkeit von Begriffen. Diese Arbeit unternimmt den Versuch, durch die Erstellung eines Such- und Visualisierungstools den Umgang mit der SWD zu erleichtern. Im Fokus der Arbeit steht dabei zum einen die Aufgabe des Fachreferenten, ein Medium geeignet zu verschlagworten. Diese Aufgabe soll durch die Optimierung der technischen Suchmöglichkeiten mit Hilfe von Schlagwörtern geschehen, z.B. durch die Suche mit Hilfe Regulärer Ausdrücke oder durch die Suche entlang der hierarchischen Relationen. Zum anderen sind die beschriebenen Relationen innerhalb der SWD oft unsauber spezifiziert, was ein negativer Seiteneffekt der interdisziplinären und kooperativen Erstellung der SWD ist. Es wird gezeigt, dass durch geeignete Visualisierung viele Fehler schnell auffindbar und korrigierbar sind, was die Aufgabe der Datenpflege um ein Vielfaches vereinfacht. Diese Veröffentlichung geht zurück auf eine Master-Arbeit im postgradualen Fernstudiengang Master of Arts (Library and Information Science) an der Humboldt-Universität zu Berlin.
  17. Mercun, T.; Zumer, M.; Aalberg, T.: Presenting bibliographic families : Designing an FRBR-based prototype using information visualization (2016) 0.00
    0.004785695 = product of:
      0.01914278 = sum of:
        0.01914278 = weight(_text_:library in 2879) [ClassicSimilarity], result of:
          0.01914278 = score(doc=2879,freq=2.0), product of:
            0.1317883 = queryWeight, product of:
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.050121464 = queryNorm
            0.14525402 = fieldWeight in 2879, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2879)
      0.25 = coord(1/4)
    
    Abstract
    Purpose - Despite the importance of bibliographic information systems for discovering and exploring library resources, some of the core functionality that should be provided to support users in their information seeking process is still missing. Investigating these issues, the purpose of this paper is to design a solution that would fulfil the missing objectives. Design/methodology/approach - Building on the concepts of a work family, functional requirements for bibliographic records (FRBR) and information visualization, the paper proposes a model and user interface design that could support a more efficient and user-friendly presentation and navigation in bibliographic information systems. Findings - The proposed design brings together all versions of a work, related works, and other works by and about the author and shows how the model was implemented into a FrbrVis prototype system using hierarchical visualization layout. Research limitations/implications - Although issues related to discovery and exploration apply to various material types, the research first focused on works of fiction and was also limited by the selected sample of records. Practical implications - The model for presenting and interacting with FRBR-based data can serve as a good starting point for future developments and implementations. Originality/value - With FRBR concepts being gradually integrated into cataloguing rules, formats, and various bibliographic services, one of the important questions that has not really been investigated and studied is how the new type of data would be presented to users in a way that would exploit the true potential of the changes.
  18. Chen, C.: CiteSpace II : detecting and visualizing emerging trends and transient patterns in scientific literature (2006) 0.00
    0.0042442293 = product of:
      0.016976917 = sum of:
        0.016976917 = product of:
          0.033953834 = sum of:
            0.033953834 = weight(_text_:22 in 5272) [ClassicSimilarity], result of:
              0.033953834 = score(doc=5272,freq=2.0), product of:
                0.17551683 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050121464 = queryNorm
                0.19345059 = fieldWeight in 5272, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5272)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    22. 7.2006 16:11:05
  19. Wu, I.-C.; Vakkari, P.: Effects of subject-oriented visualization tools on search by novices and intermediates (2018) 0.00
    0.0042442293 = product of:
      0.016976917 = sum of:
        0.016976917 = product of:
          0.033953834 = sum of:
            0.033953834 = weight(_text_:22 in 4573) [ClassicSimilarity], result of:
              0.033953834 = score(doc=4573,freq=2.0), product of:
                0.17551683 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050121464 = queryNorm
                0.19345059 = fieldWeight in 4573, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4573)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    9.12.2018 16:22:25
  20. Batorowska, H.; Kaminska-Czubala, B.: Information retrieval support : visualisation of the information space of a document (2014) 0.00
    0.0033953832 = product of:
      0.013581533 = sum of:
        0.013581533 = product of:
          0.027163066 = sum of:
            0.027163066 = weight(_text_:22 in 1444) [ClassicSimilarity], result of:
              0.027163066 = score(doc=1444,freq=2.0), product of:
                0.17551683 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050121464 = queryNorm
                0.15476047 = fieldWeight in 1444, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1444)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik

Years

Languages

  • e 54
  • d 7
  • a 1
  • More… Less…

Types

  • a 51
  • el 10
  • m 7
  • x 3
  • s 2
  • More… Less…