Search (159 results, page 3 of 8)

  • × theme_ss:"Visualisierung"
  1. Howarth, L.C.: Mapping the world of knowledge : cartograms and the diffusion of knowledge 0.01
    0.010339408 = product of:
      0.046527337 = sum of:
        0.021999538 = weight(_text_:of in 3550) [ClassicSimilarity], result of:
          0.021999538 = score(doc=3550,freq=24.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.3591007 = fieldWeight in 3550, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=3550)
        0.0245278 = weight(_text_:systems in 3550) [ClassicSimilarity], result of:
          0.0245278 = score(doc=3550,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.2037246 = fieldWeight in 3550, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.046875 = fieldNorm(doc=3550)
      0.22222222 = coord(2/9)
    
    Abstract
    Displaying aspects of "aboutness" by means of non-verbal representations, such as notations, symbols, or icons, or through rich visual displays, such as those of topic maps, can facilitate meaning-making, putting information in context, and situating it relative to other information. As the design of displays of web-enabled information has struggled to keep pace with a bourgeoning body of digital content, increasingly innovative approaches to organizing search results have warranted greater attention. Using Worldmapper as an example, this paper examines cartograms - a derivative of the data map which adds dimensionality to the geographic positioning of information - as one approach to representing and managing subject content, and to tracking the diffusion of knowledge across place and time.
    Source
    Paradigms and conceptual systems in knowledge organization: Proceedings of the Eleventh International ISKO conference, Rome, 23-26 February 2010, ed. Claudio Gnoli, Indeks, Frankfurt M
  2. Mercun, T.; Zumer, M.; Aalberg, T.: Presenting bibliographic families : Designing an FRBR-based prototype using information visualization (2016) 0.01
    0.010324167 = product of:
      0.04645875 = sum of:
        0.017552461 = weight(_text_:of in 2879) [ClassicSimilarity], result of:
          0.017552461 = score(doc=2879,freq=22.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.28651062 = fieldWeight in 2879, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2879)
        0.02890629 = weight(_text_:systems in 2879) [ClassicSimilarity], result of:
          0.02890629 = score(doc=2879,freq=4.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.24009174 = fieldWeight in 2879, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2879)
      0.22222222 = coord(2/9)
    
    Abstract
    Purpose - Despite the importance of bibliographic information systems for discovering and exploring library resources, some of the core functionality that should be provided to support users in their information seeking process is still missing. Investigating these issues, the purpose of this paper is to design a solution that would fulfil the missing objectives. Design/methodology/approach - Building on the concepts of a work family, functional requirements for bibliographic records (FRBR) and information visualization, the paper proposes a model and user interface design that could support a more efficient and user-friendly presentation and navigation in bibliographic information systems. Findings - The proposed design brings together all versions of a work, related works, and other works by and about the author and shows how the model was implemented into a FrbrVis prototype system using hierarchical visualization layout. Research limitations/implications - Although issues related to discovery and exploration apply to various material types, the research first focused on works of fiction and was also limited by the selected sample of records. Practical implications - The model for presenting and interacting with FRBR-based data can serve as a good starting point for future developments and implementations. Originality/value - With FRBR concepts being gradually integrated into cataloguing rules, formats, and various bibliographic services, one of the important questions that has not really been investigated and studied is how the new type of data would be presented to users in a way that would exploit the true potential of the changes.
    Source
    Journal of documentation. 72(2016) no.3, S.490-526
  3. Hemmje, M.: LyberWorld - a 3D graphical user interface for fulltext retrieval (1995) 0.01
    0.010040707 = product of:
      0.04518318 = sum of:
        0.016567415 = weight(_text_:of in 2385) [ClassicSimilarity], result of:
          0.016567415 = score(doc=2385,freq=10.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.2704316 = fieldWeight in 2385, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2385)
        0.028615767 = weight(_text_:systems in 2385) [ClassicSimilarity], result of:
          0.028615767 = score(doc=2385,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.23767869 = fieldWeight in 2385, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2385)
      0.22222222 = coord(2/9)
    
    Abstract
    LyberWorld is a prototype IR user interface. It implements visualizations of an abstract information space: fulltext. The video demonstrates a visual user interface for the probabilistic fulltext retrieval system INQUERY. Visualizations are used to communicate information search and browsing activities in a natural way by applying metaphors of spatial navigation in abstract information spaces. Visualization tools for exploring information spaces and judging relevance of information items are introduced and an example session demonstrates the prototype. The presence of a spatial model in the user's mind is regarded as an essential contribution towards natural interaction and reduction of cognitive costs during retrieval dialogues.
    Source
    Proceeding CHI '95 Conference Companion on Human Factors in Computing Systems
  4. Salaba, A.; Mercun, T.; Aalberg, T.: Complexity of work families and entity-based visualization displays (2018) 0.01
    0.010040707 = product of:
      0.04518318 = sum of:
        0.016567415 = weight(_text_:of in 5184) [ClassicSimilarity], result of:
          0.016567415 = score(doc=5184,freq=10.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.2704316 = fieldWeight in 5184, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5184)
        0.028615767 = weight(_text_:systems in 5184) [ClassicSimilarity], result of:
          0.028615767 = score(doc=5184,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.23767869 = fieldWeight in 5184, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5184)
      0.22222222 = coord(2/9)
    
    Abstract
    Conceptual modeling of bibliographic data, including the FR models and the consolidated IFLA LRM, has provided an opportunity to shift focus to entities and relationships and to support hierarchical work-based exploration of bibliographic information. This paper reports on a study examining the complexity of a work's bibliographic family data and user interactions with data visualizations, compared to traditional displays. Findings suggest that the FRBR-based visual bibliographic information system supports work families of different complexities more equally than a traditional system. Differences between the two systems also show that the FRBR-based system was more effective especially for related-works and author-related tasks.
  5. Huang, S.-C.; Bias, R.G.; Schnyer, D.: How are icons processed by the brain? : Neuroimaging measures of four types of visual stimuli used in information systems (2015) 0.01
    0.009750018 = product of:
      0.04387508 = sum of:
        0.014968789 = weight(_text_:of in 1725) [ClassicSimilarity], result of:
          0.014968789 = score(doc=1725,freq=16.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.24433708 = fieldWeight in 1725, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1725)
        0.02890629 = weight(_text_:systems in 1725) [ClassicSimilarity], result of:
          0.02890629 = score(doc=1725,freq=4.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.24009174 = fieldWeight in 1725, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1725)
      0.22222222 = coord(2/9)
    
    Abstract
    We sought to understand how users interpret meanings of symbols commonly used in information systems, especially how icons are processed by the brain. We investigated Chinese and English speakers' processing of 4 types of visual stimuli: icons, pictures, Chinese characters, and English words. The goal was to examine, via functional magnetic resonance imaging (fMRI) data, the hypothesis that people cognitively process icons as logographic words and to provide neurological evidence related to human-computer interaction (HCI), which has been rare in traditional information system studies. According to the neuroimaging data of 19 participants, we conclude that icons are not cognitively processed as logographical words like Chinese characters, although they both stimulate the semantic system in the brain that is needed for language processing. Instead, more similar to images and pictures, icons are not as efficient as words in conveying meanings, and brains (people) make more effort to process icons than words. We use this study to demonstrate that it is practicable to test information system constructs such as elements of graphical user interfaces (GUIs) with neuroscience data and that, with such data, we can better understand individual or group differences related to system usage and user-computer interactions.
    Source
    Journal of the Association for Information Science and Technology. 66(2015) no.4, S.702-720
  6. Seeliger, F.: ¬A tool for systematic visualization of controlled descriptors and their relation to others as a rich context for a discovery system (2015) 0.01
    0.009447608 = product of:
      0.042514235 = sum of:
        0.01526523 = weight(_text_:of in 2547) [ClassicSimilarity], result of:
          0.01526523 = score(doc=2547,freq=26.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.2491759 = fieldWeight in 2547, product of:
              5.0990195 = tf(freq=26.0), with freq of:
                26.0 = termFreq=26.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03125 = fieldNorm(doc=2547)
        0.027249003 = weight(_text_:software in 2547) [ClassicSimilarity], result of:
          0.027249003 = score(doc=2547,freq=2.0), product of:
            0.15541996 = queryWeight, product of:
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03917671 = queryNorm
            0.17532499 = fieldWeight in 2547, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03125 = fieldNorm(doc=2547)
      0.22222222 = coord(2/9)
    
    Abstract
    The discovery service (a search engine and service called WILBERT) used at our library at the Technical University of Applied Sciences Wildau (TUAS Wildau) is comprised of more than 8 million items. If we were to record all licensed publications in this tool to a higher level of articles, including their bibliographic records and full texts, we would have a holding estimated at a hundred million documents. A lot of features, such as ranking, autocompletion, multi-faceted classification, refining opportunities reduce the number of hits. However, it is not enough to give intuitive support for a systematic overview of topics related to documents in the library. John Naisbitt once said: "We are drowning in information, but starving for knowledge." This quote is still very true today. Two years ago, we started to develop micro thesauri for MINT topics in order to develop an advanced indexing of the library stock. We use iQvoc as a vocabulary management system to create the thesaurus. It provides an easy-to-use browser interface that builds a SKOS thesaurus in the background. The purpose of this is to integrate the thesauri in WILBERT in order to offer a better subject-related search. This approach especially supports first-year students by giving them the possibility to browse through a hierarchical alignment of a subject, for instance, logistics or computer science, and thereby discover how the terms are related. It also supports the students with an insight into established abbreviations and alternative labels. Students at the TUAS Wildau were involved in the developmental process of the software regarding the interface and functionality of iQvoc. The first steps have been taken and involve the inclusion of 3000 terms in our discovery tool WILBERT.
  7. Rafols, I.; Porter, A.L.; Leydesdorff, L.: Science overlay maps : a new tool for research policy and library management (2010) 0.01
    0.009184495 = product of:
      0.041330226 = sum of:
        0.016802425 = weight(_text_:of in 3987) [ClassicSimilarity], result of:
          0.016802425 = score(doc=3987,freq=14.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.2742677 = fieldWeight in 3987, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=3987)
        0.0245278 = weight(_text_:systems in 3987) [ClassicSimilarity], result of:
          0.0245278 = score(doc=3987,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.2037246 = fieldWeight in 3987, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.046875 = fieldNorm(doc=3987)
      0.22222222 = coord(2/9)
    
    Abstract
    We present a novel approach to visually locate bodies of research within the sciences, both at each moment of time and dynamically. This article describes how this approach fits with other efforts to locally and globally map scientific outputs. We then show how these science overlay maps help benchmarking, explore collaborations, and track temporal changes, using examples of universities, corporations, funding agencies, and research topics. We address their conditions of application and discuss advantages, downsides, and limitations. Overlay maps especially help investigate the increasing number of scientific developments and organizations that do not fit within traditional disciplinary categories. We make these tools available online to enable researchers to explore the ongoing sociocognitive transformations of science and technology systems.
    Source
    Journal of the American Society for Information Science and Technology. 61(2010) no.9, S.1871-1887
  8. Hajdu Barat, A.: Human perception and knowledge organization : visual imagery (2007) 0.01
    0.008942596 = product of:
      0.04024168 = sum of:
        0.019801848 = weight(_text_:of in 2595) [ClassicSimilarity], result of:
          0.019801848 = score(doc=2595,freq=28.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.32322758 = fieldWeight in 2595, product of:
              5.2915025 = tf(freq=28.0), with freq of:
                28.0 = termFreq=28.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2595)
        0.020439833 = weight(_text_:systems in 2595) [ClassicSimilarity], result of:
          0.020439833 = score(doc=2595,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.1697705 = fieldWeight in 2595, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2595)
      0.22222222 = coord(2/9)
    
    Abstract
    Purpose - This paper aims to explore the theory and practice of knowledge organization and its necessary connection to human perception, and shows a solution of the potential ones. Design/methodology/approach - The author attempts to survey the problem of concept-building and extension, as well as the determination of semantics in different aspects. The purpose is to find criteria for the choice of the solution that best incorporates users into the design cycles of knowledge organization systems. Findings - It is widely agreed that cognition provides the basis for concept-building; however, at the next stage of processing there is a debate. Fundamentally, what is the connection between perception and the superior cognitive processes? The perceptual method does not separate these two but rather considers them united, with perception permeating cognition. By contrast, the linguistic method considers perception as an information-receiving system. Separate from, and following, perception, the cognitive subsystems then perform information and data processing, leading to both knowledge organization and representation. We assume by that model that top-level concepts emerge from knowledge organization and representation. This paper points obvious connection of visual imagery and the internet; perceptual access of knowledge organization and information retrieval. There are some practical and characteristic solutions for the visualization of information without demand of completeness. Research limitations/implications - Librarians need to identify those semantic characteristics which stimulate a similar conceptual image both in the mind of the librarian and in the mind of the user. Originality/value - For a fresh perspective, an understanding of perception is required as well.
  9. Minkov, E.; Kahanov, K.; Kuflik, T.: Graph-based recommendation integrating rating history and domain knowledge : application to on-site guidance of museum visitors (2017) 0.01
    0.008942596 = product of:
      0.04024168 = sum of:
        0.019801848 = weight(_text_:of in 3756) [ClassicSimilarity], result of:
          0.019801848 = score(doc=3756,freq=28.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.32322758 = fieldWeight in 3756, product of:
              5.2915025 = tf(freq=28.0), with freq of:
                28.0 = termFreq=28.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3756)
        0.020439833 = weight(_text_:systems in 3756) [ClassicSimilarity], result of:
          0.020439833 = score(doc=3756,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.1697705 = fieldWeight in 3756, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3756)
      0.22222222 = coord(2/9)
    
    Abstract
    Visitors to museums and other cultural heritage sites encounter a wealth of exhibits in a variety of subject areas, but can explore only a small number of them. Moreover, there typically exists rich complementary information that can be delivered to the visitor about exhibits of interest, but only a fraction of this information can be consumed during the limited time of the visit. Recommender systems may help visitors to cope with this information overload. Ideally, the recommender system of choice should model user preferences, as well as background knowledge about the museum's environment, considering aspects of physical and thematic relevancy. We propose a personalized graph-based recommender framework, representing rating history and background multi-facet information jointly as a relational graph. A random walk measure is applied to rank available complementary multimedia presentations by their relevancy to a visitor's profile, integrating the various dimensions. We report the results of experiments conducted using authentic data collected at the Hecht museum. An evaluation of multiple graph variants, compared with several popular and state-of-the-art recommendation methods, indicates on advantages of the graph-based approach.
    Source
    Journal of the Association for Information Science and Technology. 68(2017) no.8, S.1911-1924
  10. Maas, J.F.: SWD-Explorer : Design und Implementation eines Software-Tools zur erweiterten Suche und grafischen Navigation in der Schlagwortnormdatei (2010) 0.01
    0.008745227 = product of:
      0.03935352 = sum of:
        0.005292266 = weight(_text_:of in 4035) [ClassicSimilarity], result of:
          0.005292266 = score(doc=4035,freq=2.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.086386204 = fieldWeight in 4035, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4035)
        0.034061253 = weight(_text_:software in 4035) [ClassicSimilarity], result of:
          0.034061253 = score(doc=4035,freq=2.0), product of:
            0.15541996 = queryWeight, product of:
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03917671 = queryNorm
            0.21915624 = fieldWeight in 4035, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4035)
      0.22222222 = coord(2/9)
    
    Abstract
    Die Schlagwortnormdatei (SWD) stellt als kooperativ erstelltes, kontrolliertes Vokabular ein aus dem deutschsprachigen Raum nicht mehr wegzudenkendes Mittel zur Verschlagwortung von Medien dar. Die SWD dient primär der Vereinheitlichung der Verschlagwortung. Darüber hinaus sind in der Struktur der SWD Relationen zwischen Schlagwörtern definiert, die eine gut vorbereitete Suche stark erleichtern können. Beispiel für solche Relationen sind die Unterbegriff-/Oberbegriffrelationen (Hyponym/Hyperonym) oder die Relation der Ähnlichkeit von Begriffen. Diese Arbeit unternimmt den Versuch, durch die Erstellung eines Such- und Visualisierungstools den Umgang mit der SWD zu erleichtern. Im Fokus der Arbeit steht dabei zum einen die Aufgabe des Fachreferenten, ein Medium geeignet zu verschlagworten. Diese Aufgabe soll durch die Optimierung der technischen Suchmöglichkeiten mit Hilfe von Schlagwörtern geschehen, z.B. durch die Suche mit Hilfe Regulärer Ausdrücke oder durch die Suche entlang der hierarchischen Relationen. Zum anderen sind die beschriebenen Relationen innerhalb der SWD oft unsauber spezifiziert, was ein negativer Seiteneffekt der interdisziplinären und kooperativen Erstellung der SWD ist. Es wird gezeigt, dass durch geeignete Visualisierung viele Fehler schnell auffindbar und korrigierbar sind, was die Aufgabe der Datenpflege um ein Vielfaches vereinfacht. Diese Veröffentlichung geht zurück auf eine Master-Arbeit im postgradualen Fernstudiengang Master of Arts (Library and Information Science) an der Humboldt-Universität zu Berlin.
  11. Braun, S.: Manifold: a custom analytics platform to visualize research impact (2015) 0.01
    0.008606319 = product of:
      0.03872844 = sum of:
        0.014200641 = weight(_text_:of in 2906) [ClassicSimilarity], result of:
          0.014200641 = score(doc=2906,freq=10.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.23179851 = fieldWeight in 2906, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=2906)
        0.0245278 = weight(_text_:systems in 2906) [ClassicSimilarity], result of:
          0.0245278 = score(doc=2906,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.2037246 = fieldWeight in 2906, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.046875 = fieldNorm(doc=2906)
      0.22222222 = coord(2/9)
    
    Abstract
    The use of research impact metrics and analytics has become an integral component to many aspects of institutional assessment. Many platforms currently exist to provide such analytics, both proprietary and open source; however, the functionality of these systems may not always overlap to serve uniquely specific needs. In this paper, I describe a novel web-based platform, named Manifold, that I built to serve custom research impact assessment needs in the University of Minnesota Medical School. Built on a standard LAMP architecture, Manifold automatically pulls publication data for faculty from Scopus through APIs, calculates impact metrics through automated analytics, and dynamically generates report-like profiles that visualize those metrics. Work on this project has resulted in many lessons learned about challenges to sustainability and scalability in developing a system of such magnitude.
  12. Hook, P.A.; Gantchev, A.: Using combined metadata sources to visualize a small library (OBL's English Language Books) (2017) 0.01
    0.0084427325 = product of:
      0.037992295 = sum of:
        0.017552461 = weight(_text_:of in 3870) [ClassicSimilarity], result of:
          0.017552461 = score(doc=3870,freq=22.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.28651062 = fieldWeight in 3870, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3870)
        0.020439833 = weight(_text_:systems in 3870) [ClassicSimilarity], result of:
          0.020439833 = score(doc=3870,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.1697705 = fieldWeight in 3870, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3870)
      0.22222222 = coord(2/9)
    
    Abstract
    Data from multiple knowledge organization systems are combined to provide a global overview of the content holdings of a small personal library. Subject headings and classification data are used to effectively map the combined book and topic space of the library. While harvested and manipulated by hand, the work reveals issues and potential solutions when using automated techniques to produce topic maps of much larger libraries. The small library visualized consists of the thirty-nine, digital, English language books found in the Osama Bin Laden (OBL) compound in Abbottabad, Pakistan upon his death. As this list of books has garnered considerable media attention, it is worth providing a visual overview of the subject content of these books - some of which is not readily apparent from the titles. Metadata from subject headings and classification numbers was combined to create book-subject maps. Tree maps of the classification data were also produced. The books contain 328 subject headings. In order to enhance the base map with meaningful thematic overlay, library holding count data was also harvested (and aggregated from duplicates). This additional data revealed the relative scarcity or popularity of individual books.
  13. Hearst, M.A.: Search user interfaces (2009) 0.01
    0.008259334 = product of:
      0.037167 = sum of:
        0.01404197 = weight(_text_:of in 4029) [ClassicSimilarity], result of:
          0.01404197 = score(doc=4029,freq=22.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.2292085 = fieldWeight in 4029, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03125 = fieldNorm(doc=4029)
        0.023125032 = weight(_text_:systems in 4029) [ClassicSimilarity], result of:
          0.023125032 = score(doc=4029,freq=4.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.19207339 = fieldWeight in 4029, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03125 = fieldNorm(doc=4029)
      0.22222222 = coord(2/9)
    
    Abstract
    This book outlines the human side of the information seeking process, and focuses on the aspects of this process that can best be supported by the user interface. It describes the methods behind user interface design generally, and search interface design in particular, with an emphasis on how best to evaluate search interfaces. It discusses research results and current practices surrounding user interfaces for query specification, display of retrieval results, grouping retrieval results, navigation of information collections, query reformulation, search personalization, and the broader tasks of sensemaking and text analysis. Much of the discussion pertains to Web search engines, but the book also covers the special considerations surrounding search of other information collections.
    Content
    Inhalt: The design of search user interfaces -- The evaluation of search user interfaces -- Models of the information seeking process -- Query specification -- Presentation of search results -- Query reformulation -- Supporting the search process -- Integrating navigation with search -- Personalization in search -- Information visualization for search interfaces -- Information visualization for text analysis -- Emerging trends in search interfaces. Vgl. die digitale Fassung unter: http://searchuserinterfaces.com.
    LCSH
    User interfaces (Computer systems)
    Subject
    User interfaces (Computer systems)
  14. Platis, N. et al.: Visualization of uncertainty in tag clouds (2016) 0.01
    0.008249789 = product of:
      0.03712405 = sum of:
        0.010584532 = weight(_text_:of in 2755) [ClassicSimilarity], result of:
          0.010584532 = score(doc=2755,freq=2.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.17277241 = fieldWeight in 2755, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.078125 = fieldNorm(doc=2755)
        0.026539518 = product of:
          0.053079035 = sum of:
            0.053079035 = weight(_text_:22 in 2755) [ClassicSimilarity], result of:
              0.053079035 = score(doc=2755,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.38690117 = fieldWeight in 2755, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=2755)
          0.5 = coord(1/2)
      0.22222222 = coord(2/9)
    
    Date
    1. 2.2016 18:25:22
  15. Osinska, V.; Bala, P.: New methods for visualization and improvement of classification schemes : the case of computer science (2010) 0.01
    0.008001433 = product of:
      0.036006447 = sum of:
        0.020082738 = weight(_text_:of in 3693) [ClassicSimilarity], result of:
          0.020082738 = score(doc=3693,freq=20.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.32781258 = fieldWeight in 3693, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=3693)
        0.015923709 = product of:
          0.031847417 = sum of:
            0.031847417 = weight(_text_:22 in 3693) [ClassicSimilarity], result of:
              0.031847417 = score(doc=3693,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.23214069 = fieldWeight in 3693, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3693)
          0.5 = coord(1/2)
      0.22222222 = coord(2/9)
    
    Abstract
    Generally, Computer Science (CS) classifications are inconsistent in taxonomy strategies. t is necessary to develop CS taxonomy research to combine its historical perspective, its current knowledge and its predicted future trends - including all breakthroughs in information and communication technology. In this paper we have analyzed the ACM Computing Classification System (CCS) by means of visualization maps. The important achievement of current work is an effective visualization of classified documents from the ACM Digital Library. From the technical point of view, the innovation lies in the parallel use of analysis units: (sub)classes and keywords as well as a spherical 3D information surface. We have compared both the thematic and semantic maps of classified documents and results presented in Table 1. Furthermore, the proposed new method is used for content-related evaluation of the original scheme. Summing up: we improved an original ACM classification in the Computer Science domain by means of visualization.
    Date
    22. 7.2010 19:36:46
  16. Soylu, A.; Giese, M.; Jimenez-Ruiz, E.; Kharlamov, E.; Zheleznyakov, D.; Horrocks, I.: Towards exploiting query history for adaptive ontology-based visual query formulation (2014) 0.01
    0.007895015 = product of:
      0.03552757 = sum of:
        0.010999769 = weight(_text_:of in 1576) [ClassicSimilarity], result of:
          0.010999769 = score(doc=1576,freq=6.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.17955035 = fieldWeight in 1576, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=1576)
        0.0245278 = weight(_text_:systems in 1576) [ClassicSimilarity], result of:
          0.0245278 = score(doc=1576,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.2037246 = fieldWeight in 1576, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.046875 = fieldNorm(doc=1576)
      0.22222222 = coord(2/9)
    
    Abstract
    Grounded on real industrial use cases, we recently proposed an ontology-based visual query system for SPARQL, named OptiqueVQS. Ontology-based visual query systems employ ontologies and visual representations to depict the domain of interest and queries, and are promising to enable end users without any technical background to access data on their own. However, even with considerably small ontologies, the number of ontology elements to choose from increases drastically, and hence hinders usability. Therefore, in this paper, we propose a method using the log of past queries for ranking and suggesting query extensions as a user types a query, and identify emerging issues to be addressed.
  17. Aletras, N.; Baldwin, T.; Lau, J.H.; Stevenson, M.: Evaluating topic representations for exploring document collections (2017) 0.01
    0.007868583 = product of:
      0.035408624 = sum of:
        0.014968789 = weight(_text_:of in 3325) [ClassicSimilarity], result of:
          0.014968789 = score(doc=3325,freq=16.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.24433708 = fieldWeight in 3325, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3325)
        0.020439833 = weight(_text_:systems in 3325) [ClassicSimilarity], result of:
          0.020439833 = score(doc=3325,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.1697705 = fieldWeight in 3325, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3325)
      0.22222222 = coord(2/9)
    
    Abstract
    Topic models have been shown to be a useful way of representing the content of large document collections, for example, via visualization interfaces (topic browsers). These systems enable users to explore collections by way of latent topics. A standard way to represent a topic is using a term list; that is the top-n words with highest conditional probability within the topic. Other topic representations such as textual and image labels also have been proposed. However, there has been no comparison of these alternative representations. In this article, we compare 3 different topic representations in a document retrieval task. Participants were asked to retrieve relevant documents based on predefined queries within a fixed time limit, presenting topics in one of the following modalities: (a) lists of terms, (b) textual phrase labels, and (c) image labels. Results show that textual labels are easier for users to interpret than are term lists and image labels. Moreover, the precision of retrieved documents for textual and image labels is comparable to the precision achieved by representing topics using term lists, demonstrating that labeling methods are an effective alternative topic representation.
    Source
    Journal of the Association for Information Science and Technology. 68(2017) no.1, S.154-167
  18. Börner, K.: Atlas of knowledge : anyone can map (2015) 0.01
    0.0078268815 = product of:
      0.035220966 = sum of:
        0.012701439 = weight(_text_:of in 3355) [ClassicSimilarity], result of:
          0.012701439 = score(doc=3355,freq=8.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.20732689 = fieldWeight in 3355, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=3355)
        0.022519529 = product of:
          0.045039058 = sum of:
            0.045039058 = weight(_text_:22 in 3355) [ClassicSimilarity], result of:
              0.045039058 = score(doc=3355,freq=4.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.32829654 = fieldWeight in 3355, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3355)
          0.5 = coord(1/2)
      0.22222222 = coord(2/9)
    
    Content
    One of a series of three publications influenced by the travelling exhibit Places & Spaces: Mapping Science, curated by the Cyberinfrastructure for Network Science Center at Indiana University. - Additional materials can be found at http://http://scimaps.org/atlas2. Erweitert durch: Börner, Katy. Atlas of Science: Visualizing What We Know.
    Date
    22. 1.2017 16:54:03
    22. 1.2017 17:10:56
  19. Mercun, T.; Zumer, M.; Aalberg, T.: Presenting bibliographic families using information visualization : evaluation of FRBR-based prototype and hierarchical visualizations (2017) 0.01
    0.0076537454 = product of:
      0.034441855 = sum of:
        0.0140020205 = weight(_text_:of in 3350) [ClassicSimilarity], result of:
          0.0140020205 = score(doc=3350,freq=14.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.22855641 = fieldWeight in 3350, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3350)
        0.020439833 = weight(_text_:systems in 3350) [ClassicSimilarity], result of:
          0.020439833 = score(doc=3350,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.1697705 = fieldWeight in 3350, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3350)
      0.22222222 = coord(2/9)
    
    Abstract
    Since their beginnings, bibliographic information systems have been displaying results in the form of long, textual lists. With the development of new data models and computer technologies, the need for new approaches to present and interact with bibliographic data has slowly been maturing. To investigate how this could be accomplished, a prototype system, FrbrVis1, was designed to present work families within a bibliographic information system using information visualization. This paper reports on two user studies, a controlled and an observational experiment, that have been carried out to assess the Functional Requirements for Bibliographic Records (FRBR)-based against an existing system as well as to test four different hierarchical visual layouts. The results clearly show that FrbrVis offers better performance and user experience compared to the baseline system. The differences between the four hierarchical visualizations (Indented tree, Radial tree, Circlepack, and Sunburst) were, on the other hand, not as pronounced, but the Indented tree and Sunburst design proved to be the most successful, both in performance as well as user perception. The paper therefore not only evaluates the application of a visual presentation of bibliographic work families, but also provides valuable results regarding the performance and user acceptance of individual hierarchical visualization techniques.
    Source
    Journal of the Association for Information Science and Technology. 68(2017) no.2, S.392-411
  20. Eibl, M.: Recherche in elektronischen Bibliothekskatalogen (1999) 0.01
    0.0075691673 = product of:
      0.068122506 = sum of:
        0.068122506 = weight(_text_:software in 3465) [ClassicSimilarity], result of:
          0.068122506 = score(doc=3465,freq=2.0), product of:
            0.15541996 = queryWeight, product of:
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03917671 = queryNorm
            0.43831247 = fieldWeight in 3465, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.078125 = fieldNorm(doc=3465)
      0.11111111 = coord(1/9)
    
    Source
    Software

Years

Languages

  • e 141
  • d 17
  • a 1
  • More… Less…

Types

  • a 130
  • el 28
  • m 14
  • x 9
  • s 3
  • r 2
  • b 1
  • p 1
  • More… Less…

Subjects

Classifications