Search (5 results, page 1 of 1)

  • × theme_ss:"Wissensrepräsentation"
  • × type_ss:"a"
  • × type_ss:"el"
  • × year_i:[2020 TO 2030}
  1. Aizawa, A.; Kohlhase, M.: Mathematical information retrieval (2021) 0.01
    0.008009522 = product of:
      0.05606665 = sum of:
        0.014125523 = weight(_text_:information in 667) [ClassicSimilarity], result of:
          0.014125523 = score(doc=667,freq=8.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.27153665 = fieldWeight in 667, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=667)
        0.04194113 = weight(_text_:retrieval in 667) [ClassicSimilarity], result of:
          0.04194113 = score(doc=667,freq=8.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.46789268 = fieldWeight in 667, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0546875 = fieldNorm(doc=667)
      0.14285715 = coord(2/14)
    
    Abstract
    We present an overview of the NTCIR Math Tasks organized during NTCIR-10, 11, and 12. These tasks are primarily dedicated to techniques for searching mathematical content with formula expressions. In this chapter, we first summarize the task design and introduce test collections generated in the tasks. We also describe the features and main challenges of mathematical information retrieval systems and discuss future perspectives in the field.
    Series
    ¬The Information retrieval series, vol 43
    Source
    Evaluating information retrieval and access tasks. Eds.: Sakai, T., Oard, D., Kando, N. [https://doi.org/10.1007/978-981-15-5554-1_12]
  2. Gladun, A.; Rogushina, J.: Development of domain thesaurus as a set of ontology concepts with use of semantic similarity and elements of combinatorial optimization (2021) 0.00
    0.0044226884 = product of:
      0.030958816 = sum of:
        0.009988253 = weight(_text_:information in 572) [ClassicSimilarity], result of:
          0.009988253 = score(doc=572,freq=4.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.1920054 = fieldWeight in 572, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=572)
        0.020970564 = weight(_text_:retrieval in 572) [ClassicSimilarity], result of:
          0.020970564 = score(doc=572,freq=2.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.23394634 = fieldWeight in 572, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0546875 = fieldNorm(doc=572)
      0.14285715 = coord(2/14)
    
    Abstract
    We consider use of ontological background knowledge in intelligent information systems and analyze directions of their reduction in compliance with specifics of particular user task. Such reduction is aimed at simplification of knowledge processing without loss of significant information. We propose methods of generation of task thesauri based on domain ontology that contain such subset of ontological concepts and relations that can be used in task solving. Combinatorial optimization is used for minimization of task thesaurus. In this approach, semantic similarity estimates are used for determination of concept significance for user task. Some practical examples of optimized thesauri application for semantic retrieval and competence analysis demonstrate efficiency of proposed approach.
  3. Frey, J.; Streitmatter, D.; Götz, F.; Hellmann, S.; Arndt, N.: DBpedia Archivo : a Web-Scale interface for ontology archiving under consumer-oriented aspects (2020) 0.00
    0.0030198572 = product of:
      0.042278 = sum of:
        0.042278 = weight(_text_:web in 52) [ClassicSimilarity], result of:
          0.042278 = score(doc=52,freq=6.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.43716836 = fieldWeight in 52, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=52)
      0.071428575 = coord(1/14)
    
    Abstract
    While thousands of ontologies exist on the web, a unified sys-tem for handling online ontologies - in particular with respect to discov-ery, versioning, access, quality-control, mappings - has not yet surfacedand users of ontologies struggle with many challenges. In this paper, wepresent an online ontology interface and augmented archive called DB-pedia Archivo, that discovers, crawls, versions and archives ontologies onthe DBpedia Databus. Based on this versioned crawl, different features,quality measures and, if possible, fixes are deployed to handle and sta-bilize the changes in the found ontologies at web-scale. A comparison toexisting approaches and ontology repositories is given.
  4. Hauff-Hartig, S.: Wissensrepräsentation durch RDF: Drei angewandte Forschungsbeispiele : Bitte recht vielfältig: Wie Wissensgraphen, Disco und FaBiO Struktur in Mangas und die Humanities bringen (2021) 0.00
    7.6474476E-4 = product of:
      0.010706427 = sum of:
        0.010706427 = product of:
          0.032119278 = sum of:
            0.032119278 = weight(_text_:22 in 318) [ClassicSimilarity], result of:
              0.032119278 = score(doc=318,freq=2.0), product of:
                0.103770934 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.029633347 = queryNorm
                0.30952093 = fieldWeight in 318, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=318)
          0.33333334 = coord(1/3)
      0.071428575 = coord(1/14)
    
    Date
    22. 5.2021 12:43:05
  5. Gil-Berrozpe, J.C.: Description, categorization, and representation of hyponymy in environmental terminology (2022) 0.00
    5.7655195E-4 = product of:
      0.008071727 = sum of:
        0.008071727 = weight(_text_:information in 1004) [ClassicSimilarity], result of:
          0.008071727 = score(doc=1004,freq=8.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.1551638 = fieldWeight in 1004, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=1004)
      0.071428575 = coord(1/14)
    
    Abstract
    Terminology has evolved from static and prescriptive theories to dynamic and cognitive approaches. Thanks to these approaches, there have been significant advances in the design and elaboration of terminological resources. This has resulted in the creation of tools such as terminological knowledge bases, which are able to show how concepts are interrelated through different semantic or conceptual relations. Of these relations, hyponymy is the most relevant to terminology work because it deals with concept categorization and term hierarchies. This doctoral thesis presents an enhancement of the semantic structure of EcoLexicon, a terminological knowledge base on environmental science. The aim of this research was to improve the description, categorization, and representation of hyponymy in environmental terminology. Therefore, we created HypoLexicon, a new stand-alone module for EcoLexicon in the form of a hyponymy-based terminological resource. This resource contains twelve terminological entries from four specialized domains (Biology, Chemistry, Civil Engineering, and Geology), which consist of 309 concepts and 465 terms associated with those concepts. This research was mainly based on the theoretical premises of Frame-based Terminology. This theory was combined with Cognitive Linguistics, for conceptual description and representation; Corpus Linguistics, for the extraction and processing of linguistic and terminological information; and Ontology, related to hyponymy and relevant for concept categorization. HypoLexicon was constructed from the following materials: (i) the EcoLexicon English Corpus; (ii) other specialized terminological resources, including EcoLexicon; (iii) Sketch Engine; and (iv) Lexonomy. This thesis explains the methodologies applied for corpus extraction and compilation, corpus analysis, the creation of conceptual hierarchies, and the design of the terminological template. The results of the creation of HypoLexicon are discussed by highlighting the information in the hyponymy-based terminological entries: (i) parent concept (hypernym); (ii) child concepts (hyponyms, with various hyponymy levels); (iii) terminological definitions; (iv) conceptual categories; (v) hyponymy subtypes; and (vi) hyponymic contexts. Furthermore, the features and the navigation within HypoLexicon are described from the user interface and the admin interface. In conclusion, this doctoral thesis lays the groundwork for developing a terminological resource that includes definitional, relational, ontological and contextual information about specialized hypernyms and hyponyms. All of this information on specialized knowledge is simple to follow thanks to the hierarchical structure of the terminological template used in HypoLexicon. Therefore, not only does it enhance knowledge representation, but it also facilitates its acquisition.