Search (67 results, page 1 of 4)

  • × theme_ss:"Wissensrepräsentation"
  • × type_ss:"a"
  • × type_ss:"el"
  1. Hauff-Hartig, S.: Wissensrepräsentation durch RDF: Drei angewandte Forschungsbeispiele : Bitte recht vielfältig: Wie Wissensgraphen, Disco und FaBiO Struktur in Mangas und die Humanities bringen (2021) 0.02
    0.02265065 = product of:
      0.0453013 = sum of:
        0.0453013 = sum of:
          0.0044310926 = weight(_text_:a in 318) [ClassicSimilarity], result of:
            0.0044310926 = score(doc=318,freq=2.0), product of:
              0.043477926 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.037706986 = queryNorm
              0.10191591 = fieldWeight in 318, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.0625 = fieldNorm(doc=318)
          0.04087021 = weight(_text_:22 in 318) [ClassicSimilarity], result of:
            0.04087021 = score(doc=318,freq=2.0), product of:
              0.13204344 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.037706986 = queryNorm
              0.30952093 = fieldWeight in 318, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0625 = fieldNorm(doc=318)
      0.5 = coord(1/2)
    
    Date
    22. 5.2021 12:43:05
    Type
    a
  2. Priss, U.: Faceted knowledge representation (1999) 0.02
    0.021757921 = product of:
      0.043515842 = sum of:
        0.043515842 = sum of:
          0.007754412 = weight(_text_:a in 2654) [ClassicSimilarity], result of:
            0.007754412 = score(doc=2654,freq=8.0), product of:
              0.043477926 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.037706986 = queryNorm
              0.17835285 = fieldWeight in 2654, product of:
                2.828427 = tf(freq=8.0), with freq of:
                  8.0 = termFreq=8.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.0546875 = fieldNorm(doc=2654)
          0.03576143 = weight(_text_:22 in 2654) [ClassicSimilarity], result of:
            0.03576143 = score(doc=2654,freq=2.0), product of:
              0.13204344 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.037706986 = queryNorm
              0.2708308 = fieldWeight in 2654, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0546875 = fieldNorm(doc=2654)
      0.5 = coord(1/2)
    
    Abstract
    Faceted Knowledge Representation provides a formalism for implementing knowledge systems. The basic notions of faceted knowledge representation are "unit", "relation", "facet" and "interpretation". Units are atomic elements and can be abstract elements or refer to external objects in an application. Relations are sequences or matrices of 0 and 1's (binary matrices). Facets are relational structures that combine units and relations. Each facet represents an aspect or viewpoint of a knowledge system. Interpretations are mappings that can be used to translate between different representations. This paper introduces the basic notions of faceted knowledge representation. The formalism is applied here to an abstract modeling of a faceted thesaurus as used in information retrieval.
    Date
    22. 1.2016 17:30:31
    Type
    a
  3. Priss, U.: Description logic and faceted knowledge representation (1999) 0.02
    0.020580957 = product of:
      0.041161913 = sum of:
        0.041161913 = sum of:
          0.010509259 = weight(_text_:a in 2655) [ClassicSimilarity], result of:
            0.010509259 = score(doc=2655,freq=20.0), product of:
              0.043477926 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.037706986 = queryNorm
              0.24171482 = fieldWeight in 2655, product of:
                4.472136 = tf(freq=20.0), with freq of:
                  20.0 = termFreq=20.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046875 = fieldNorm(doc=2655)
          0.030652655 = weight(_text_:22 in 2655) [ClassicSimilarity], result of:
            0.030652655 = score(doc=2655,freq=2.0), product of:
              0.13204344 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.037706986 = queryNorm
              0.23214069 = fieldWeight in 2655, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=2655)
      0.5 = coord(1/2)
    
    Abstract
    The term "facet" was introduced into the field of library classification systems by Ranganathan in the 1930's [Ranganathan, 1962]. A facet is a viewpoint or aspect. In contrast to traditional classification systems, faceted systems are modular in that a domain is analyzed in terms of baseline facets which are then synthesized. In this paper, the term "facet" is used in a broader meaning. Facets can describe different aspects on the same level of abstraction or the same aspect on different levels of abstraction. The notion of facets is related to database views, multicontexts and conceptual scaling in formal concept analysis [Ganter and Wille, 1999], polymorphism in object-oriented design, aspect-oriented programming, views and contexts in description logic and semantic networks. This paper presents a definition of facets in terms of faceted knowledge representation that incorporates the traditional narrower notion of facets and potentially facilitates translation between different knowledge representation formalisms. A goal of this approach is a modular, machine-aided knowledge base design mechanism. A possible application is faceted thesaurus construction for information retrieval and data mining. Reasoning complexity depends on the size of the modules (facets). A more general analysis of complexity will be left for future research.
    Date
    22. 1.2016 17:30:31
    Type
    a
  4. Beppler, F.D.; Fonseca, F.T.; Pacheco, R.C.S.: Hermeneus: an architecture for an ontology-enabled information retrieval (2008) 0.02
    0.018649647 = product of:
      0.037299294 = sum of:
        0.037299294 = sum of:
          0.006646639 = weight(_text_:a in 3261) [ClassicSimilarity], result of:
            0.006646639 = score(doc=3261,freq=8.0), product of:
              0.043477926 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.037706986 = queryNorm
              0.15287387 = fieldWeight in 3261, product of:
                2.828427 = tf(freq=8.0), with freq of:
                  8.0 = termFreq=8.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046875 = fieldNorm(doc=3261)
          0.030652655 = weight(_text_:22 in 3261) [ClassicSimilarity], result of:
            0.030652655 = score(doc=3261,freq=2.0), product of:
              0.13204344 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.037706986 = queryNorm
              0.23214069 = fieldWeight in 3261, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=3261)
      0.5 = coord(1/2)
    
    Abstract
    Ontologies improve IR systems regarding its retrieval and presentation of information, which make the task of finding information more effective, efficient, and interactive. In this paper we argue that ontologies also greatly improve the engineering of such systems. We created a framework that uses ontology to drive the process of engineering an IR system. We developed a prototype that shows how a domain specialist without knowledge in the IR field can build an IR system with interactive components. The resulting system provides support for users not only to find their information needs but also to extend their state of knowledge. This way, our approach to ontology-enabled information retrieval addresses both the engineering aspect described here and also the usability aspect described elsewhere.
    Date
    28.11.2016 12:43:22
    Type
    a
  5. Bittner, T.; Donnelly, M.; Winter, S.: Ontology and semantic interoperability (2006) 0.02
    0.016987987 = product of:
      0.033975974 = sum of:
        0.033975974 = sum of:
          0.0033233196 = weight(_text_:a in 4820) [ClassicSimilarity], result of:
            0.0033233196 = score(doc=4820,freq=2.0), product of:
              0.043477926 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.037706986 = queryNorm
              0.07643694 = fieldWeight in 4820, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046875 = fieldNorm(doc=4820)
          0.030652655 = weight(_text_:22 in 4820) [ClassicSimilarity], result of:
            0.030652655 = score(doc=4820,freq=2.0), product of:
              0.13204344 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.037706986 = queryNorm
              0.23214069 = fieldWeight in 4820, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=4820)
      0.5 = coord(1/2)
    
    Date
    3.12.2016 18:39:22
    Type
    a
  6. Monireh, E.; Sarker, M.K.; Bianchi, F.; Hitzler, P.; Doran, D.; Xie, N.: Reasoning over RDF knowledge bases using deep learning (2018) 0.02
    0.015541373 = product of:
      0.031082746 = sum of:
        0.031082746 = sum of:
          0.0055388655 = weight(_text_:a in 4553) [ClassicSimilarity], result of:
            0.0055388655 = score(doc=4553,freq=8.0), product of:
              0.043477926 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.037706986 = queryNorm
              0.12739488 = fieldWeight in 4553, product of:
                2.828427 = tf(freq=8.0), with freq of:
                  8.0 = termFreq=8.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.0390625 = fieldNorm(doc=4553)
          0.02554388 = weight(_text_:22 in 4553) [ClassicSimilarity], result of:
            0.02554388 = score(doc=4553,freq=2.0), product of:
              0.13204344 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.037706986 = queryNorm
              0.19345059 = fieldWeight in 4553, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=4553)
      0.5 = coord(1/2)
    
    Abstract
    Semantic Web knowledge representation standards, and in particular RDF and OWL, often come endowed with a formal semantics which is considered to be of fundamental importance for the field. Reasoning, i.e., the drawing of logical inferences from knowledge expressed in such standards, is traditionally based on logical deductive methods and algorithms which can be proven to be sound and complete and terminating, i.e. correct in a very strong sense. For various reasons, though, in particular the scalability issues arising from the ever increasing amounts of Semantic Web data available and the inability of deductive algorithms to deal with noise in the data, it has been argued that alternative means of reasoning should be investigated which bear high promise for high scalability and better robustness. From this perspective, deductive algorithms can be considered the gold standard regarding correctness against which alternative methods need to be tested. In this paper, we show that it is possible to train a Deep Learning system on RDF knowledge graphs, such that it is able to perform reasoning over new RDF knowledge graphs, with high precision and recall compared to the deductive gold standard.
    Date
    16.11.2018 14:22:01
    Type
    a
  7. Pankowski, T.: Ontological databases with faceted queries (2022) 0.00
    0.002854666 = product of:
      0.005709332 = sum of:
        0.005709332 = product of:
          0.011418664 = sum of:
            0.011418664 = weight(_text_:a in 666) [ClassicSimilarity], result of:
              0.011418664 = score(doc=666,freq=34.0), product of:
                0.043477926 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.037706986 = queryNorm
                0.2626313 = fieldWeight in 666, product of:
                  5.8309517 = tf(freq=34.0), with freq of:
                    34.0 = termFreq=34.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=666)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The success of the use of ontology-based systems depends on efficient and user-friendly methods of formulating queries against the ontology. We propose a method to query a class of ontologies, called facet ontologies ( fac-ontologies ), using a faceted human-oriented approach. A fac-ontology has two important features: (a) a hierarchical view of it can be defined as a nested facet over this ontology and the view can be used as a faceted interface to create queries and to explore the ontology; (b) the ontology can be converted into an ontological database , the ABox of which is stored in a database, and the faceted queries are evaluated against this database. We show that the proposed faceted interface makes it possible to formulate queries that are semantically equivalent to $${\mathcal {SROIQ}}^{Fac}$$ SROIQ Fac , a limited version of the $${\mathcal {SROIQ}}$$ SROIQ description logic. The TBox of a fac-ontology is divided into a set of rules defining intensional predicates and a set of constraint rules to be satisfied by the database. We identify a class of so-called reflexive weak cycles in a set of constraint rules and propose a method to deal with them in the chase procedure. The considerations are illustrated with solutions implemented in the DAFO system ( data access based on faceted queries over ontologies ).
    Type
    a
  8. Prieto-Díaz, R.: ¬A faceted approach to building ontologies (2002) 0.00
    0.0023499418 = product of:
      0.0046998835 = sum of:
        0.0046998835 = product of:
          0.009399767 = sum of:
            0.009399767 = weight(_text_:a in 2259) [ClassicSimilarity], result of:
              0.009399767 = score(doc=2259,freq=16.0), product of:
                0.043477926 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.037706986 = queryNorm
                0.2161963 = fieldWeight in 2259, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2259)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    An ontology is "an explicit conceptualization of a domain of discourse, and thus provides a shared and common understanding of the domain." We have been producing ontologies for millennia to understand and explain our rationale and environment. From Plato's philosophical framework to modern day classification systems, ontologies are, in most cases, the product of extensive analysis and categorization. Only recently has the process of building ontologies become a research topic of interest. Today, ontologies are built very much ad-hoc. A terminology is first developed providing a controlled vocabulary for the subject area or domain of interest, then it is organized into a taxonomy where key concepts are identified, and finally these concepts are defined and related to create an ontology. The intent of this paper is to show that domain analysis methods can be used for building ontologies. Domain analysis aims at generic models that represent groups of similar systems within an application domain. In this sense, it deals with categorization of common objects and operations, with clear, unambiguous definitions of them and with defining their relationships.
    Type
    a
  9. Blanco, E.; Moldovan, D.: ¬A model for composing semantic relations (2011) 0.00
    0.0021981692 = product of:
      0.0043963385 = sum of:
        0.0043963385 = product of:
          0.008792677 = sum of:
            0.008792677 = weight(_text_:a in 4762) [ClassicSimilarity], result of:
              0.008792677 = score(doc=4762,freq=14.0), product of:
                0.043477926 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.037706986 = queryNorm
                0.20223314 = fieldWeight in 4762, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4762)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This paper presents a model to compose semantic relations. The model is independent of any particular set of relations and uses an extended definition for semantic relations. This extended definition includes restrictions on the domain and range of relations and utilizes semantic primitives to characterize them. Primitives capture elementary properties between the arguments of a relation. An algebra for composing semantic primitives is used to automatically identify the resulting relation of composing a pair of compatible relations. Inference axioms are obtained. Axioms take as input a pair of semantic relations and output a new, previously ignored relation. The usefulness of this proposed model is shown using PropBank relations. Eight inference axioms are obtained and their accuracy and productivity are evaluated. The model offers an unsupervised way of accurately extracting additional semantics from text.
    Type
    a
  10. Bold, N.; Kim, W.-J.; Yang, J.-D.: Converting object-based thesauri into XML Topic Maps (2010) 0.00
    0.0021981692 = product of:
      0.0043963385 = sum of:
        0.0043963385 = product of:
          0.008792677 = sum of:
            0.008792677 = weight(_text_:a in 4799) [ClassicSimilarity], result of:
              0.008792677 = score(doc=4799,freq=14.0), product of:
                0.043477926 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.037706986 = queryNorm
                0.20223314 = fieldWeight in 4799, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4799)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Constructing ontology is considerably time consuming process in general. Since there are a vast amount of thesauri currently available, it may be a feasible solution to exploit thesauri, when constructing ontology in a short period of time. This paper designs and implements a XTM (XML Topic Maps) code converter generating XTM coded ontology from an object based thesaurus. It is an extended thesaurus, which enriches the conventional thesauri with user defined associations, a notion of instances and occurrences associated with them. The reason we adopt XTM is that it is a verified and practical methodology to semantically reorganize the conceptual structure of extant web applications with minimal effort. Moreover, since XTM is conceptually similar to our object based thesauri, recommendation and inference mechanism already developed in our system could be easily applied to the generated XTM ontology. To show that the XTM ontology is correct, we also verify it with onto pia Omnigator and Vizigator, the components of Ontopia Knowledge Suite (OKS) tool.
    Type
    a
  11. Tzitzikas, Y.; Spyratos, N.; Constantopoulos, P.; Analyti, A.: Extended faceted ontologies (2002) 0.00
    0.0021981692 = product of:
      0.0043963385 = sum of:
        0.0043963385 = product of:
          0.008792677 = sum of:
            0.008792677 = weight(_text_:a in 2280) [ClassicSimilarity], result of:
              0.008792677 = score(doc=2280,freq=14.0), product of:
                0.043477926 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.037706986 = queryNorm
                0.20223314 = fieldWeight in 2280, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2280)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    A faceted ontology consists of a set of facets, where each facet consists of a predefined set of terms structured by a subsumption relation. We propose two extensions of faceted ontologies, which allow inferring conjunctions of terms that are valid in the underlying domain. We give a model-theoretic interpretation to these extended faceted ontologies and we provide mechanisms for inferring the valid conjunctions of terms. This inference service can be exploited for preventing errors during the indexing process and for deriving navigation trees that are suitable for browsing. The proposed scheme has several advantages by comparison to the hierarchical classification schemes that are currently used, namely: conceptual clarity: it is easier to understand, compactness: it takes less space, and scalability: the update operations can be formulated easier and be performed more efficiently.
    Type
    a
  12. Mäkelä, E.; Hyvönen, E.; Saarela, S.; Vilfanen, K.: Application of ontology techniques to view-based semantic serach and browsing (2012) 0.00
    0.0021981692 = product of:
      0.0043963385 = sum of:
        0.0043963385 = product of:
          0.008792677 = sum of:
            0.008792677 = weight(_text_:a in 3264) [ClassicSimilarity], result of:
              0.008792677 = score(doc=3264,freq=14.0), product of:
                0.043477926 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.037706986 = queryNorm
                0.20223314 = fieldWeight in 3264, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3264)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    We scho how the beenfits of the view-based search method, developed within the information retrieval community, can be extended with ontology-based search, developed within the Semantic Web community, and with semantic recommendations. As a proof of the concept, we have implemented an ontology-and view-based search engine and recommendations system Ontogaotr for RDF(S) repositories. Ontogator is innovative in two ways. Firstly, the RDFS.based ontologies used for annotating metadata are used in the user interface to facilitate view-based information retrieval. The views provide the user with an overview of the repositorys contents and a vocabulary for expressing search queries. Secondlyy, a semantic browsing function is provided by a recommender system. This system enriches instance level metadata by ontologies and provides the user with links to semantically related relevant resources. The semantic linkage is specified in terms of logical rules. To illustrate and discuss the ideas, a deployed application of Ontogator to a photo repository of the Helsinki University Museum is presented.
    Type
    a
  13. Collard, J.; Paiva, V. de; Fong, B.; Subrahmanian, E.: Extracting mathematical concepts from text (2022) 0.00
    0.0021674242 = product of:
      0.0043348484 = sum of:
        0.0043348484 = product of:
          0.008669697 = sum of:
            0.008669697 = weight(_text_:a in 668) [ClassicSimilarity], result of:
              0.008669697 = score(doc=668,freq=10.0), product of:
                0.043477926 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.037706986 = queryNorm
                0.19940455 = fieldWeight in 668, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=668)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    We investigate different systems for extracting mathematical entities from English texts in the mathematical field of category theory as a first step for constructing a mathematical knowledge graph. We consider four different term extractors and compare their results. This small experiment showcases some of the issues with the construction and evaluation of terms extracted from noisy domain text. We also make available two open corpora in research mathematics, in particular in category theory: a small corpus of 755 abstracts from the journal TAC (3188 sentences), and a larger corpus from the nLab community wiki (15,000 sentences).
    Type
    a
  14. Glimm, B.; Hogan, A.; Krötzsch, M.; Polleres, A.: OWL: Yet to arrive on the Web of Data? (2012) 0.00
    0.002035109 = product of:
      0.004070218 = sum of:
        0.004070218 = product of:
          0.008140436 = sum of:
            0.008140436 = weight(_text_:a in 4798) [ClassicSimilarity], result of:
              0.008140436 = score(doc=4798,freq=12.0), product of:
                0.043477926 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.037706986 = queryNorm
                0.18723148 = fieldWeight in 4798, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4798)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Seven years on from OWL becoming a W3C recommendation, and two years on from the more recent OWL 2 W3C recommendation, OWL has still experienced only patchy uptake on the Web. Although certain OWL features (like owl:sameAs) are very popular, other features of OWL are largely neglected by publishers in the Linked Data world. This may suggest that despite the promise of easy implementations and the proposal of tractable profiles suggested in OWL's second version, there is still no "right" standard fragment for the Linked Data community. In this paper, we (1) analyse uptake of OWL on the Web of Data, (2) gain insights into the OWL fragment that is actually used/usable on the Web, where we arrive at the conclusion that this fragment is likely to be a simplified profile based on OWL RL, (3) propose and discuss such a new fragment, which we call OWL LD (for Linked Data).
    Type
    a
  15. Veltman, K.H.: Towards a Semantic Web for culture 0.00
    0.0019970664 = product of:
      0.003994133 = sum of:
        0.003994133 = product of:
          0.007988266 = sum of:
            0.007988266 = weight(_text_:a in 4040) [ClassicSimilarity], result of:
              0.007988266 = score(doc=4040,freq=26.0), product of:
                0.043477926 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.037706986 = queryNorm
                0.18373153 = fieldWeight in 4040, product of:
                  5.0990195 = tf(freq=26.0), with freq of:
                    26.0 = termFreq=26.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4040)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Today's semantic web deals with meaning in a very restricted sense and offers static solutions. This is adequate for many scientific, technical purposes and for business transactions requiring machine-to-machine communication, but does not answer the needs of culture. Science, technology and business are concerned primarily with the latest findings, the state of the art, i.e. the paradigm or dominant world-view of the day. In this context, history is considered non-essential because it deals with things that are out of date. By contrast, culture faces a much larger challenge, namely, to re-present changes in ways of knowing; changing meanings in different places at a given time (synchronically) and over time (diachronically). Culture is about both objects and the commentaries on them; about a cumulative body of knowledge; about collective memory and heritage. Here, history plays a central role and older does not mean less important or less relevant. Hence, a Leonardo painting that is 400 years old, or a Greek statue that is 2500 years old, typically have richer commentaries and are often more valuable than their contemporary equivalents. In this context, the science of meaning (semantics) is necessarily much more complex than semantic primitives. A semantic web in the cultural domain must enable us to trace how meaning and knowledge organisation have evolved historically in different cultures. This paper examines five issues to address this challenge: 1) different world-views (i.e. a shift from substance to function and from ontology to multiple ontologies); 2) developments in definitions and meaning; 3) distinctions between words and concepts; 4) new classes of relations; and 5) dynamic models of knowledge organisation. These issues reveal that historical dimensions of cultural diversity in knowledge organisation are also central to classification of biological diversity. New ways are proposed of visualizing knowledge using a time/space horizon to distinguish between universals and particulars. It is suggested that new visualization methods make possible a history of questions as well as of answers, thus enabling dynamic access to cultural and historical dimensions of knowledge. Unlike earlier media, which were limited to recording factual dimensions of collective memory, digital media enable us to explore theories, ways of perceiving, ways of knowing; to enter into other mindsets and world-views and thus to attain novel insights and new levels of tolerance. Some practical consequences are outlined.
    Type
    a
  16. Putkey, T.: Using SKOS to express faceted classification on the Semantic Web (2011) 0.00
    0.0019970664 = product of:
      0.003994133 = sum of:
        0.003994133 = product of:
          0.007988266 = sum of:
            0.007988266 = weight(_text_:a in 311) [ClassicSimilarity], result of:
              0.007988266 = score(doc=311,freq=26.0), product of:
                0.043477926 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.037706986 = queryNorm
                0.18373153 = fieldWeight in 311, product of:
                  5.0990195 = tf(freq=26.0), with freq of:
                    26.0 = termFreq=26.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=311)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This paper looks at Simple Knowledge Organization System (SKOS) to investigate how a faceted classification can be expressed in RDF and shared on the Semantic Web. Statement of the Problem Faceted classification outlines facets as well as subfacets and facet values. Hierarchical relationships and associative relationships are established in a faceted classification. RDF is used to describe how a specific URI has a relationship to a facet value. Not only does RDF decompose "information into pieces," but by incorporating facet values RDF also given the URI the hierarchical and associative relationships expressed in the faceted classification. Combining faceted classification and RDF creates more knowledge than if the two stood alone. An application understands the subjectpredicate-object relationship in RDF and can display hierarchical and associative relationships based on the object (facet) value. This paper continues to investigate if the above idea is indeed useful, used, and applicable. If so, how can a faceted classification be expressed in RDF? What would this expression look like? Literature Review This paper used the same articles as the paper A Survey of Faceted Classification: History, Uses, Drawbacks and the Semantic Web (Putkey, 2010). In that paper, appropriate resources were discovered by searching in various databases for "faceted classification" and "faceted search," either in the descriptor or title fields. Citations were also followed to find more articles as well as searching the Internet for the same terms. To retrieve the documents about RDF, searches combined "faceted classification" and "RDF, " looking for these words in either the descriptor or title.
    Methodology Based on information from research papers, more research was done on SKOS and examples of SKOS and shared faceted classifications in the Semantic Web and about SKOS and how to express SKOS in RDF/XML. Once confident with these ideas, the author used a faceted taxonomy created in a Vocabulary Design class and encoded it using SKOS. Instead of writing RDF in a program such as Notepad, a thesaurus tool was used to create the taxonomy according to SKOS standards and then export the thesaurus in RDF/XML format. These processes and tools are then analyzed. Results The initial statement of the problem was simply an extension of the survey paper done earlier in this class. To continue on with the research, more research was done into SKOS - a standard for expressing thesauri, taxonomies and faceted classifications so they can be shared on the semantic web.
    Type
    a
  17. Favato Barcelos, P.P.; Sales, T.P.; Fumagalli, M.; Guizzardi, G.; Valle Sousa, I.; Fonseca, C.M.; Romanenko, E.; Kritz, J.: ¬A FAIR model catalog for ontology-driven conceptual modeling research (2022) 0.00
    0.0019582848 = product of:
      0.0039165695 = sum of:
        0.0039165695 = product of:
          0.007833139 = sum of:
            0.007833139 = weight(_text_:a in 756) [ClassicSimilarity], result of:
              0.007833139 = score(doc=756,freq=16.0), product of:
                0.043477926 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.037706986 = queryNorm
                0.18016359 = fieldWeight in 756, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=756)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Conceptual models are artifacts representing conceptualizations of particular domains. Hence, multi-domain model catalogs serve as empirical sources of knowledge and insights about specific domains, about the use of a modeling language's constructs, as well as about the patterns and anti-patterns recurrent in the models of that language crosscutting different domains. However, to support domain and language learning, model reuse, knowledge discovery for humans, and reliable automated processing and analysis by machines, these catalogs must be built following generally accepted quality requirements for scientific data management. Especially, all scientific (meta)data-including models-should be created using the FAIR principles (Findability, Accessibility, Interoperability, and Reusability). In this paper, we report on the construction of a FAIR model catalog for Ontology-Driven Conceptual Modeling research, a trending paradigm lying at the intersection of conceptual modeling and ontology engineering in which the Unified Foundational Ontology (UFO) and OntoUML emerged among the most adopted technologies. In this initial release, the catalog includes over a hundred models, developed in a variety of contexts and domains. The paper also discusses the research implications for (ontology-driven) conceptual modeling of such a resource.
    Type
    a
  18. Will, L.D.: UML model : as given in British Standard Draft for Development DD8723-5:2008 (2008) 0.00
    0.001938603 = product of:
      0.003877206 = sum of:
        0.003877206 = product of:
          0.007754412 = sum of:
            0.007754412 = weight(_text_:a in 7636) [ClassicSimilarity], result of:
              0.007754412 = score(doc=7636,freq=2.0), product of:
                0.043477926 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.037706986 = queryNorm
                0.17835285 = fieldWeight in 7636, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.109375 = fieldNorm(doc=7636)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  19. Dextre Clarke, S.G.; Will, L.D.; Cochard, N.: ¬The BS8723 thesaurus data model and exchange format, and its relationship to SKOS (2008) 0.00
    0.001938603 = product of:
      0.003877206 = sum of:
        0.003877206 = product of:
          0.007754412 = sum of:
            0.007754412 = weight(_text_:a in 6051) [ClassicSimilarity], result of:
              0.007754412 = score(doc=6051,freq=2.0), product of:
                0.043477926 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.037706986 = queryNorm
                0.17835285 = fieldWeight in 6051, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.109375 = fieldNorm(doc=6051)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  20. Assem, M. van; Menken, M.R.; Schreiber, G.; Wielemaker, J.; Wielinga, B.: ¬A method for converting thesauri to RDF/OWL (2004) 0.00
    0.001938603 = product of:
      0.003877206 = sum of:
        0.003877206 = product of:
          0.007754412 = sum of:
            0.007754412 = weight(_text_:a in 4644) [ClassicSimilarity], result of:
              0.007754412 = score(doc=4644,freq=8.0), product of:
                0.043477926 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.037706986 = queryNorm
                0.17835285 = fieldWeight in 4644, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4644)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This paper describes a method for converting existing thesauri and related resources from their native format to RDF(S) and OWL. The method identifies four steps in the conversion process. In each step, decisions have to be taken with respect to the syntax or semantics of the resulting representation. Each step is supported through a number of guidelines. The method is illustrated through conversions of two large thesauri: MeSH and WordNet.
    Type
    a

Years

Languages

  • e 61
  • d 3
  • More… Less…

Types