Search (17 results, page 1 of 1)

  • × theme_ss:"Wissensrepräsentation"
  • × type_ss:"a"
  • × year_i:[2000 TO 2010}
  1. Grzonkowski, S.; Kruk, S.R.; Gzella, A.; Demczuk, J.; McDaniel, B.: Community-aware ontologies (2009) 0.03
    0.031893983 = product of:
      0.06378797 = sum of:
        0.06378797 = product of:
          0.12757593 = sum of:
            0.12757593 = weight(_text_:network in 3382) [ClassicSimilarity], result of:
              0.12757593 = score(doc=3382,freq=4.0), product of:
                0.22917621 = queryWeight, product of:
                  4.4533744 = idf(docFreq=1398, maxDocs=44218)
                  0.05146125 = queryNorm
                0.5566718 = fieldWeight in 3382, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.4533744 = idf(docFreq=1398, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3382)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The term "social network" was first mentioned in 1954 by J.A. Barnes. The social network is a structure that consists of nodes; the nodes represent individual people or organizations. Such a structure depicts the ways in which people are connected through diverse social familiarities like acquaintance, friendship or close familiar bonds.
  2. Calegari, S.; Sanchez, E.: Object-fuzzy concept network : an enrichment of ontologies in semantic information retrieval (2008) 0.03
    0.028190564 = product of:
      0.05638113 = sum of:
        0.05638113 = product of:
          0.11276226 = sum of:
            0.11276226 = weight(_text_:network in 2393) [ClassicSimilarity], result of:
              0.11276226 = score(doc=2393,freq=8.0), product of:
                0.22917621 = queryWeight, product of:
                  4.4533744 = idf(docFreq=1398, maxDocs=44218)
                  0.05146125 = queryNorm
                0.492033 = fieldWeight in 2393, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  4.4533744 = idf(docFreq=1398, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2393)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This article shows how a fuzzy ontology-based approach can improve semantic documents retrieval. After formally defining a fuzzy ontology and a fuzzy knowledge base, a special type of new fuzzy relationship called (semantic) correlation, which links the concepts or entities in a fuzzy ontology, is discussed. These correlations, first assigned by experts, are updated after querying or when a document has been inserted into a database. Moreover, in order to define a dynamic knowledge of a domain adapting itself to the context, it is shown how to handle a tradeoff between the correct definition of an object, taken in the ontology structure, and the actual meaning assigned by individuals. The notion of a fuzzy concept network is extended, incorporating database objects so that entities and documents can similarly be represented in the network. Information retrieval (IR) algorithm, using an object-fuzzy concept network (O-FCN), is introduced and described. This algorithm allows us to derive a unique path among the entities involved in the query to obtain maxima semantic associations in the knowledge domain. Finally, the study has been validated by querying a database using fuzzy recall, fuzzy precision, and coefficient variant measures in the crisp and fuzzy cases.
  3. Drexel, G.: Knowledge engineering for intelligent information retrieval (2001) 0.02
    0.016914338 = product of:
      0.033828676 = sum of:
        0.033828676 = product of:
          0.06765735 = sum of:
            0.06765735 = weight(_text_:network in 4043) [ClassicSimilarity], result of:
              0.06765735 = score(doc=4043,freq=2.0), product of:
                0.22917621 = queryWeight, product of:
                  4.4533744 = idf(docFreq=1398, maxDocs=44218)
                  0.05146125 = queryNorm
                0.29521978 = fieldWeight in 4043, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.4533744 = idf(docFreq=1398, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4043)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This paper presents a clustered approach to designing an overall ontological model together with a general rule-based component that serves as a mapping device. By observational criteria, a multi-lingual team of experts excerpts concepts from general communication in the media. The team, then, finds equivalent expressions in English, German, French, and Spanish. On the basis of a set of ontological and lexical relations, a conceptual network is built up. Concepts are thought to be universal. Objects unique in time and space are identified by names and will be explained by the universals as their instances. Our approach relies on multi-relational descriptions of concepts. It provides a powerful tool for documentation and conceptual language learning. First and foremost, our multi-lingual, polyhierarchical ontology fills the gap of semantically-based information retrieval by generating enhanced and improved queries for internet search
  4. Nelson, S.J.; Powell, T.; Srinivasan, S.; Humphreys, B.L.: Unified Medical Language System® (UMLS®) Project (2009) 0.02
    0.016914338 = product of:
      0.033828676 = sum of:
        0.033828676 = product of:
          0.06765735 = sum of:
            0.06765735 = weight(_text_:network in 4701) [ClassicSimilarity], result of:
              0.06765735 = score(doc=4701,freq=2.0), product of:
                0.22917621 = queryWeight, product of:
                  4.4533744 = idf(docFreq=1398, maxDocs=44218)
                  0.05146125 = queryNorm
                0.29521978 = fieldWeight in 4701, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.4533744 = idf(docFreq=1398, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4701)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The Unified Medical Language System (UMLS) is a long-term research and development effort of the National Library of Medicine, aimed at assisting users in finding information from multiple sources without understanding the intricacies of each particular source. Consisting of three major knowledge sources, a Metathesaurus, a Semantic Network, and a set of lexical processing tools, the UMLS is produced and released twice yearly. Recent efforts have been aimed at expanding coverage in genetics and in clinical vocabularies designed for use in medical record systems. RxNorm, produced and released on a monthly basis, with weekly updates, is an outgrowth of the UMLS, focusing on medication terminology.
  5. Park, J.-r.: Evolution of concept networks and implications for knowledge representation (2007) 0.01
    0.014095282 = product of:
      0.028190564 = sum of:
        0.028190564 = product of:
          0.05638113 = sum of:
            0.05638113 = weight(_text_:network in 847) [ClassicSimilarity], result of:
              0.05638113 = score(doc=847,freq=2.0), product of:
                0.22917621 = queryWeight, product of:
                  4.4533744 = idf(docFreq=1398, maxDocs=44218)
                  0.05146125 = queryNorm
                0.2460165 = fieldWeight in 847, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.4533744 = idf(docFreq=1398, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=847)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Purpose - The purpose of this paper is to present descriptive characteristics of the historical development of concept networks. The linguistic principles, mechanisms and motivations behind the evolution of concept networks are discussed. Implications emanating from the idea of the historical development of concept networks are discussed in relation to knowledge representation and organization schemes. Design/methodology/approach - Natural language data including both speech and text are analyzed by examining discourse contexts in which a linguistic element such as a polysemy or homonym occurs. Linguistic literature on the historical development of concept networks is reviewed and analyzed. Findings - Semantic sense relations in concept networks can be captured in a systematic and regular manner. The mechanism and impetus behind the process of concept network development suggest that semantic senses in concept networks are closely intertwined with pragmatic contexts and discourse structure. The interrelation and permeability of the semantic senses of concept networks are captured on a continuum scale based on three linguistic parameters: concrete shared semantic sense; discourse and text structure; and contextualized pragmatic information. Research limitations/implications - Research findings signify the critical need for linking discourse structure and contextualized pragmatic information to knowledge representation and organization schemes. Originality/value - The idea of linguistic characteristics, principles, motivation and mechanisms underlying the evolution of concept networks provides theoretical ground for developing a model for integrating knowledge representation and organization schemes with discourse structure and contextualized pragmatic information.
  6. Rindflesch, T.C.; Fizsman, M.: The interaction of domain knowledge and linguistic structure in natural language processing : interpreting hypernymic propositions in biomedical text (2003) 0.01
    0.014095282 = product of:
      0.028190564 = sum of:
        0.028190564 = product of:
          0.05638113 = sum of:
            0.05638113 = weight(_text_:network in 2097) [ClassicSimilarity], result of:
              0.05638113 = score(doc=2097,freq=2.0), product of:
                0.22917621 = queryWeight, product of:
                  4.4533744 = idf(docFreq=1398, maxDocs=44218)
                  0.05146125 = queryNorm
                0.2460165 = fieldWeight in 2097, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.4533744 = idf(docFreq=1398, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2097)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Interpretation of semantic propositions in free-text documents such as MEDLINE citations would provide valuable support for biomedical applications, and several approaches to semantic interpretation are being pursued in the biomedical informatics community. In this paper, we describe a methodology for interpreting linguistic structures that encode hypernymic propositions, in which a more specific concept is in a taxonomic relationship with a more general concept. In order to effectively process these constructions, we exploit underspecified syntactic analysis and structured domain knowledge from the Unified Medical Language System (UMLS). After introducing the syntactic processing on which our system depends, we focus on the UMLS knowledge that supports interpretation of hypernymic propositions. We first use semantic groups from the Semantic Network to ensure that the two concepts involved are compatible; hierarchical information in the Metathesaurus then determines which concept is more general and which more specific. A preliminary evaluation of a sample based on the semantic group Chemicals and Drugs provides 83% precision. An error analysis was conducted and potential solutions to the problems encountered are presented. The research discussed here serves as a paradigm for investigating the interaction between domain knowledge and linguistic structure in natural language processing, and could also make a contribution to research on automatic processing of discourse structure. Additional implications of the system we present include its integration in advanced semantic interpretation processors for biomedical text and its use for information extraction in specific domains. The approach has the potential to support a range of applications, including information retrieval and ontology engineering.
  7. Synak, M.; Dabrowski, M.; Kruk, S.R.: Semantic Web and ontologies (2009) 0.01
    0.013944578 = product of:
      0.027889157 = sum of:
        0.027889157 = product of:
          0.055778313 = sum of:
            0.055778313 = weight(_text_:22 in 3376) [ClassicSimilarity], result of:
              0.055778313 = score(doc=3376,freq=2.0), product of:
                0.18020853 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05146125 = queryNorm
                0.30952093 = fieldWeight in 3376, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3376)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    31. 7.2010 16:58:22
  8. Priss, U.: Faceted information representation (2000) 0.01
    0.012201506 = product of:
      0.024403011 = sum of:
        0.024403011 = product of:
          0.048806023 = sum of:
            0.048806023 = weight(_text_:22 in 5095) [ClassicSimilarity], result of:
              0.048806023 = score(doc=5095,freq=2.0), product of:
                0.18020853 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05146125 = queryNorm
                0.2708308 = fieldWeight in 5095, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5095)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 1.2016 17:47:06
  9. Knorz, G.; Rein, B.: Semantische Suche in einer Hochschulontologie (2005) 0.01
    0.012201506 = product of:
      0.024403011 = sum of:
        0.024403011 = product of:
          0.048806023 = sum of:
            0.048806023 = weight(_text_:22 in 1852) [ClassicSimilarity], result of:
              0.048806023 = score(doc=1852,freq=2.0), product of:
                0.18020853 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05146125 = queryNorm
                0.2708308 = fieldWeight in 1852, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1852)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    11. 2.2011 18:22:58
  10. Gendt, M. van; Isaac, I.; Meij, L. van der; Schlobach, S.: Semantic Web techniques for multiple views on heterogeneous collections : a case study (2006) 0.01
    0.010458433 = product of:
      0.020916866 = sum of:
        0.020916866 = product of:
          0.041833732 = sum of:
            0.041833732 = weight(_text_:22 in 2418) [ClassicSimilarity], result of:
              0.041833732 = score(doc=2418,freq=2.0), product of:
                0.18020853 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05146125 = queryNorm
                0.23214069 = fieldWeight in 2418, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2418)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    Research and advanced technology for digital libraries : 10th European conference, proceedings / ECDL 2006, Alicante, Spain, September 17 - 22, 2006
  11. Renear, A.H.; Wickett, K.M.; Urban, R.J.; Dubin, D.; Shreeves, S.L.: Collection/item metadata relationships (2008) 0.01
    0.010458433 = product of:
      0.020916866 = sum of:
        0.020916866 = product of:
          0.041833732 = sum of:
            0.041833732 = weight(_text_:22 in 2623) [ClassicSimilarity], result of:
              0.041833732 = score(doc=2623,freq=2.0), product of:
                0.18020853 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05146125 = queryNorm
                0.23214069 = fieldWeight in 2623, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2623)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  12. Kruk, S.R.; Kruk, E.; Stankiewicz, K.: Evaluation of semantic and social technologies for digital libraries (2009) 0.01
    0.010458433 = product of:
      0.020916866 = sum of:
        0.020916866 = product of:
          0.041833732 = sum of:
            0.041833732 = weight(_text_:22 in 3387) [ClassicSimilarity], result of:
              0.041833732 = score(doc=3387,freq=2.0), product of:
                0.18020853 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05146125 = queryNorm
                0.23214069 = fieldWeight in 3387, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3387)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    1. 8.2010 12:35:22
  13. Bittner, T.; Donnelly, M.; Winter, S.: Ontology and semantic interoperability (2006) 0.01
    0.010458433 = product of:
      0.020916866 = sum of:
        0.020916866 = product of:
          0.041833732 = sum of:
            0.041833732 = weight(_text_:22 in 4820) [ClassicSimilarity], result of:
              0.041833732 = score(doc=4820,freq=2.0), product of:
                0.18020853 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05146125 = queryNorm
                0.23214069 = fieldWeight in 4820, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4820)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    3.12.2016 18:39:22
  14. Beppler, F.D.; Fonseca, F.T.; Pacheco, R.C.S.: Hermeneus: an architecture for an ontology-enabled information retrieval (2008) 0.01
    0.010458433 = product of:
      0.020916866 = sum of:
        0.020916866 = product of:
          0.041833732 = sum of:
            0.041833732 = weight(_text_:22 in 3261) [ClassicSimilarity], result of:
              0.041833732 = score(doc=3261,freq=2.0), product of:
                0.18020853 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05146125 = queryNorm
                0.23214069 = fieldWeight in 3261, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3261)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    28.11.2016 12:43:22
  15. Davies, J.; Duke, A.; Stonkus, A.: OntoShare: evolving ontologies in a knowledge sharing system (2004) 0.01
    0.009866697 = product of:
      0.019733394 = sum of:
        0.019733394 = product of:
          0.039466787 = sum of:
            0.039466787 = weight(_text_:network in 4409) [ClassicSimilarity], result of:
              0.039466787 = score(doc=4409,freq=2.0), product of:
                0.22917621 = queryWeight, product of:
                  4.4533744 = idf(docFreq=1398, maxDocs=44218)
                  0.05146125 = queryNorm
                0.17221154 = fieldWeight in 4409, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.4533744 = idf(docFreq=1398, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=4409)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    We saw in the introduction how the Semantic Web makes possible a new generation of knowledge management tools. We now turn our attention more specifically to Semantic Web based support for virtual communities of practice. The notion of communities of practice has attracted much attention in the field of knowledge management. Communities of practice are groups within (or sometimes across) organizations who share a common set of information needs or problems. They are typically not a formal organizational unit but an informal network, each sharing in part a common agenda and shared interests or issues. In one example it was found that a lot of knowledge sharing among copier engineers took place through informal exchanges, often around a water cooler. As well as local, geographically based communities, trends towards flexible working and globalisation have led to interest in supporting dispersed communities using Internet technology. The challenge for organizations is to support such communities and make them effective. Provided with an ontology meeting the needs of a particular community of practice, knowledge management tools can arrange knowledge assets into the predefined conceptual classes of the ontology, allowing more natural and intuitive access to knowledge. Knowledge management tools must give users the ability to organize information into a controllable asset. Building an intranet-based store of information is not sufficient for knowledge management; the relationships within the stored information are vital. These relationships cover such diverse issues as relative importance, context, sequence, significance, causality and association. The potential for knowledge management tools is vast; not only can they make better use of the raw information already available, but they can sift, abstract and help to share new information, and present it to users in new and compelling ways.
  16. Zeng, M.L.; Fan, W.; Lin, X.: SKOS for an integrated vocabulary structure (2008) 0.01
    0.009860306 = product of:
      0.019720612 = sum of:
        0.019720612 = product of:
          0.039441224 = sum of:
            0.039441224 = weight(_text_:22 in 2654) [ClassicSimilarity], result of:
              0.039441224 = score(doc=2654,freq=4.0), product of:
                0.18020853 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05146125 = queryNorm
                0.21886435 = fieldWeight in 2654, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2654)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In order to transfer the Chinese Classified Thesaurus (CCT) into a machine-processable format and provide CCT-based Web services, a pilot study has been conducted in which a variety of selected CCT classes and mapped thesaurus entries are encoded with SKOS. OWL and RDFS are also used to encode the same contents for the purposes of feasibility and cost-benefit comparison. CCT is a collected effort led by the National Library of China. It is an integration of the national standards Chinese Library Classification (CLC) 4th edition and Chinese Thesaurus (CT). As a manually created mapping product, CCT provides for each of the classes the corresponding thesaurus terms, and vice versa. The coverage of CCT includes four major clusters: philosophy, social sciences and humanities, natural sciences and technologies, and general works. There are 22 main-classes, 52,992 sub-classes and divisions, 110,837 preferred thesaurus terms, 35,690 entry terms (non-preferred terms), and 59,738 pre-coordinated headings (Chinese Classified Thesaurus, 2005) Major challenges of encoding this large vocabulary comes from its integrated structure. CCT is a result of the combination of two structures (illustrated in Figure 1): a thesaurus that uses ISO-2788 standardized structure and a classification scheme that is basically enumerative, but provides some flexibility for several kinds of synthetic mechanisms Other challenges include the complex relationships caused by differences of granularities of two original schemes and their presentation with various levels of SKOS elements; as well as the diverse coordination of entries due to the use of auxiliary tables and pre-coordinated headings derived from combining classes, subdivisions, and thesaurus terms, which do not correspond to existing unique identifiers. The poster reports the progress, shares the sample SKOS entries, and summarizes problems identified during the SKOS encoding process. Although OWL Lite and OWL Full provide richer expressiveness, the cost-benefit issues and the final purposes of encoding CCT raise questions of using such approaches.
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  17. Dobrev, P.; Kalaydjiev, O.; Angelova, G.: From conceptual structures to semantic interoperability of content (2007) 0.01
    0.008715361 = product of:
      0.017430723 = sum of:
        0.017430723 = product of:
          0.034861445 = sum of:
            0.034861445 = weight(_text_:22 in 4607) [ClassicSimilarity], result of:
              0.034861445 = score(doc=4607,freq=2.0), product of:
                0.18020853 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05146125 = queryNorm
                0.19345059 = fieldWeight in 4607, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4607)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    Conceptual structures: knowledge architectures for smart applications: 15th International Conference on Conceptual Structures, ICCS 2007, Sheffield, UK, July 22 - 27, 2007 ; proceedings. Eds.: U. Priss u.a