Search (4 results, page 1 of 1)

  • × theme_ss:"Wissensrepräsentation"
  • × type_ss:"a"
  • × year_i:[2020 TO 2030}
  1. Fagundes, P.B.; Freund, G.P.; Vital, L.P.; Monteiro de Barros, C.; Macedo, D.D.J.de: Taxonomias, ontologias e tesauros : possibilidades de contribuição para o processo de Engenharia de Requisitos (2020) 0.01
    0.008567562 = product of:
      0.03427025 = sum of:
        0.03427025 = product of:
          0.0685405 = sum of:
            0.0685405 = weight(_text_:software in 5828) [ClassicSimilarity], result of:
              0.0685405 = score(doc=5828,freq=6.0), product of:
                0.18056466 = queryWeight, product of:
                  3.9671519 = idf(docFreq=2274, maxDocs=44218)
                  0.045514934 = queryNorm
                0.37958977 = fieldWeight in 5828, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.9671519 = idf(docFreq=2274, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5828)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    Some of the fundamental activities of the software development process are related to the discipline of Requirements Engineering, whose objective is the discovery, analysis, documentation and verification of the requirements that will be part of the system. Requirements are the conditions or capabilities that software must have or perform to meet the users needs. The present study is being developed to propose a model of cooperation between Information Science and Requirements Engineering. Aims to present the analysis results on the possibilities of using the knowledge organization systems: taxonomies, thesauri and ontologies during the activities of Requirements Engineering: design, survey, elaboration, negotiation, specification, validation and requirements management. From the results obtained it was possible to identify in which stage of the Requirements Engineering process, each type of knowledge organization system could be used. We expect that this study put in evidence the need for new researchs and proposals to strengt the exchange between Information Science, as a science that has information as object of study, and the Requirements Engineering which has in the information the raw material to identify the informational needs of software users.
  2. Hauff-Hartig, S.: Wissensrepräsentation durch RDF: Drei angewandte Forschungsbeispiele : Bitte recht vielfältig: Wie Wissensgraphen, Disco und FaBiO Struktur in Mangas und die Humanities bringen (2021) 0.01
    0.0061666453 = product of:
      0.024666581 = sum of:
        0.024666581 = product of:
          0.049333163 = sum of:
            0.049333163 = weight(_text_:22 in 318) [ClassicSimilarity], result of:
              0.049333163 = score(doc=318,freq=2.0), product of:
                0.15938555 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045514934 = queryNorm
                0.30952093 = fieldWeight in 318, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=318)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    22. 5.2021 12:43:05
  3. Jia, J.: From data to knowledge : the relationships between vocabularies, linked data and knowledge graphs (2021) 0.00
    0.0038541534 = product of:
      0.015416614 = sum of:
        0.015416614 = product of:
          0.030833228 = sum of:
            0.030833228 = weight(_text_:22 in 106) [ClassicSimilarity], result of:
              0.030833228 = score(doc=106,freq=2.0), product of:
                0.15938555 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045514934 = queryNorm
                0.19345059 = fieldWeight in 106, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=106)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    22. 1.2021 14:24:32
  4. Hocker, J.; Schindler, C.; Rittberger, M.: Participatory design for ontologies : a case study of an open science ontology for qualitative coding schemas (2020) 0.00
    0.0030833227 = product of:
      0.012333291 = sum of:
        0.012333291 = product of:
          0.024666581 = sum of:
            0.024666581 = weight(_text_:22 in 179) [ClassicSimilarity], result of:
              0.024666581 = score(doc=179,freq=2.0), product of:
                0.15938555 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045514934 = queryNorm
                0.15476047 = fieldWeight in 179, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=179)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    20. 1.2015 18:30:22