Search (193 results, page 10 of 10)

  • × theme_ss:"Wissensrepräsentation"
  • × type_ss:"a"
  1. Hocker, J.; Schindler, C.; Rittberger, M.: Participatory design for ontologies : a case study of an open science ontology for qualitative coding schemas (2020) 0.00
    8.853288E-4 = product of:
      0.007967959 = sum of:
        0.007967959 = product of:
          0.015935918 = sum of:
            0.015935918 = weight(_text_:22 in 179) [ClassicSimilarity], result of:
              0.015935918 = score(doc=179,freq=2.0), product of:
                0.10297151 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02940506 = queryNorm
                0.15476047 = fieldWeight in 179, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=179)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Date
    20. 1.2015 18:30:22
  2. Thenmalar, S.; Geetha, T.V.: Enhanced ontology-based indexing and searching (2014) 0.00
    7.746627E-4 = product of:
      0.006971964 = sum of:
        0.006971964 = product of:
          0.013943928 = sum of:
            0.013943928 = weight(_text_:22 in 1633) [ClassicSimilarity], result of:
              0.013943928 = score(doc=1633,freq=2.0), product of:
                0.10297151 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02940506 = queryNorm
                0.1354154 = fieldWeight in 1633, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=1633)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Date
    20. 1.2015 18:30:22
  3. Panyr, J.: Thesauri, Semantische Netze, Frames, Topic Maps, Taxonomien, Ontologien - begriffliche Verwirrung oder konzeptionelle Vielfalt? (2006) 0.00
    7.6892605E-4 = product of:
      0.0069203344 = sum of:
        0.0069203344 = product of:
          0.013840669 = sum of:
            0.013840669 = weight(_text_:web in 6058) [ClassicSimilarity], result of:
              0.013840669 = score(doc=6058,freq=2.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.14422815 = fieldWeight in 6058, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03125 = fieldNorm(doc=6058)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Abstract
    Mit der Verbreitung des Internets und insbesondere mit der Einführung des Begriffes Semantic Web wurde eine Reihe von neuen Begriffen (Termini) für nicht immer neue Entwicklungen eingeführt, ohne dass die bisherige Begriffsbildung bzw. die schon angewandten Lösungen in benachbarten Fachgebieten hinreichend berücksichtigt wurden. Dabei wird manchmal der Eindruck erweckt, dass die populären Anwendungszweige der Informatik (oder auch der Informationswissenschaft) hauptsächlich durch wirksame Schlagworte gesteuert werden. Im deutschsprachigen Raum kommt auch noch die oftmals (vermeintlich) werbewirksame Verwendung der nicht übersetzten englischen Ausdrücke im Original oder als eingedeutschter Termini. Letzteres führt dabei nicht selten zur semantischen Verschiebungen der Bedeutung der ursprünglichen Begriffe. So z.B. wird das englische Wort concept (entspricht dem deutschen Wort Begriff) mit allen seinen Ableitungen (wie z.B. conceptualization - Verbegrifflichung, conceptual - begrifflich) in der eingedeutschten unübersetzten Form fälschlich verwendet, ohne dass diese Wortschöpfungen dabei näher erläutert werden. Es wird dadurch der Eindruck erweckt, dass etwas inhaltlich Neues eingeführt wird. Häufig werden diese Begriffe auch nebeneinander verwendet, wie z.B. in der Definition von Ontologie in der Internet-Enzyklopädie Wikipedia " ... System von Begriffen und/oder Konzepten und Relationen zwischen diesen Begriffen". In den zahlreichen Studien über die Ontologie wird auf die Möglichkeit ähnlicher Verwendung von Thesauri nicht eingegangen, sie existieren im Kontext der Veröffentlichung überhaupt nicht (vgl. z.B. die Studie von Smith (2003), die jedoch mit Bezug zu Philosophie gerade zu überfrachtet wird). In der folgenden Arbeit werden verwandte Repräsentationsarten, wie z.B. Thesaurus, semantisches Netz, Frames, Themenkarten (Topic Maps) und Ontologie definiert. Die Gemeinsamkeiten dieser Repräsentationsformen werden dabei im Vordergrund stehen. Die in der Literatur häufig betonten Unterschiede sind manchmal aus der Unkenntnis der theoretischen Basis dieser Ansätze abzuleiten. Eine Koexistenz jeweiliger Repräsentation ist vonnöten. Im Vordergrund des Aufsatzes steht die mögliche Wechselwirkung zwischen Ontologien und Thesauri.
  4. Ricci, F.; Schneider, R.: ¬Die Verwendung von SKOS-Daten zur semantischen Suchfragenerweiterung im Kontext des individualisierbaren Informationsportals RODIN (2010) 0.00
    7.6892605E-4 = product of:
      0.0069203344 = sum of:
        0.0069203344 = product of:
          0.013840669 = sum of:
            0.013840669 = weight(_text_:web in 4261) [ClassicSimilarity], result of:
              0.013840669 = score(doc=4261,freq=2.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.14422815 = fieldWeight in 4261, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4261)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Source
    Semantic web & linked data: Elemente zukünftiger Informationsinfrastrukturen ; 1. DGI-Konferenz ; 62. Jahrestagung der DGI ; Frankfurt am Main, 7. - 9. Oktober 2010 ; Proceedings / Deutsche Gesellschaft für Informationswissenschaft und Informationspraxis. Hrsg.: M. Ockenfeld
  5. Alvers, M.R.: Semantische wissensbasierte Suche in den Life Sciences am Beispiel von GoPubMed (2010) 0.00
    7.6892605E-4 = product of:
      0.0069203344 = sum of:
        0.0069203344 = product of:
          0.013840669 = sum of:
            0.013840669 = weight(_text_:web in 4262) [ClassicSimilarity], result of:
              0.013840669 = score(doc=4262,freq=2.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.14422815 = fieldWeight in 4262, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4262)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Source
    Semantic web & linked data: Elemente zukünftiger Informationsinfrastrukturen ; 1. DGI-Konferenz ; 62. Jahrestagung der DGI ; Frankfurt am Main, 7. - 9. Oktober 2010 ; Proceedings / Deutsche Gesellschaft für Informationswissenschaft und Informationspraxis. Hrsg.: M. Ockenfeld
  6. Sy, M.-F.; Ranwez, S.; Montmain, J.; Ragnault, A.; Crampes, M.; Ranwez, V.: User centered and ontology based information retrieval system for life sciences (2012) 0.00
    7.6892605E-4 = product of:
      0.0069203344 = sum of:
        0.0069203344 = product of:
          0.013840669 = sum of:
            0.013840669 = weight(_text_:web in 699) [ClassicSimilarity], result of:
              0.013840669 = score(doc=699,freq=2.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.14422815 = fieldWeight in 699, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03125 = fieldNorm(doc=699)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Abstract
    Background: Because of the increasing number of electronic resources, designing efficient tools to retrieve and exploit them is a major challenge. Some improvements have been offered by semantic Web technologies and applications based on domain ontologies. In life science, for instance, the Gene Ontology is widely exploited in genomic applications and the Medical Subject Headings is the basis of biomedical publications indexation and information retrieval process proposed by PubMed. However current search engines suffer from two main drawbacks: there is limited user interaction with the list of retrieved resources and no explanation for their adequacy to the query is provided. Users may thus be confused by the selection and have no idea on how to adapt their queries so that the results match their expectations. Results: This paper describes an information retrieval system that relies on domain ontology to widen the set of relevant documents that is retrieved and that uses a graphical rendering of query results to favor user interactions. Semantic proximities between ontology concepts and aggregating models are used to assess documents adequacy with respect to a query. The selection of documents is displayed in a semantic map to provide graphical indications that make explicit to what extent they match the user's query; this man/machine interface favors a more interactive and iterative exploration of data corpus, by facilitating query concepts weighting and visual explanation. We illustrate the benefit of using this information retrieval system on two case studies one of which aiming at collecting human genes related to transcription factors involved in hemopoiesis pathway. Conclusions: The ontology based information retrieval system described in this paper (OBIRS) is freely available at: http://www.ontotoolkit.mines-ales.fr/ObirsClient/. This environment is a first step towards a user centred application in which the system enlightens relevant information to provide decision help.
  7. Waard, A. de; Fluit, C.; Harmelen, F. van: Drug Ontology Project for Elsevier (DOPE) (2007) 0.00
    7.6892605E-4 = product of:
      0.0069203344 = sum of:
        0.0069203344 = product of:
          0.013840669 = sum of:
            0.013840669 = weight(_text_:web in 758) [ClassicSimilarity], result of:
              0.013840669 = score(doc=758,freq=2.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.14422815 = fieldWeight in 758, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03125 = fieldNorm(doc=758)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Abstract
    Innovative research institutes rely on the availability of complete and accurate information about new research and development, and it is the business of information providers such as Elsevier to provide the required information in a cost-effective way. It is very likely that the semantic web will make an important contribution to this effort, since it facilitates access to an unprecedented quantity of data. However, with the unremitting growth of scientific information, integrating access to all this information remains a significant problem, not least because of the heterogeneity of the information sources involved - sources which may use different syntactic standards (syntactic heterogeneity), organize information in very different ways (structural heterogeneity) and even use different terminologies to refer to the same information (semantic heterogeneity). The ability to address these different kinds of heterogeneity is the key to integrated access. Thesauri have already proven to be a core technology to effective information access as they provide controlled vocabularies for indexing information, and thereby help to overcome some of the problems of free-text search by relating and grouping relevant terms in a specific domain. However, currently there is no open architecture which supports the use of these thesauri for querying other data sources. For example, when we move from the centralized and controlled use of EMTREE within EMBASE.com to a distributed setting, it becomes crucial to improve access to the thesaurus by means of a standardized representation using open data standards that allow for semantic qualifications. In general, mental models and keywords for accessing data diverge between subject areas and communities, and so many different ontologies have been developed. An ideal architecture must therefore support the disclosure of distributed and heterogeneous data sources through different ontologies. The aim of the DOPE project (Drug Ontology Project for Elsevier) is to investigate the possibility of providing access to multiple information sources in the area of life science through a single interface.
  8. Stuckenschmidt, H.; Harmelen, F van; Waard, A. de; Scerri, T.; Bhogal, R.; Buel, J. van; Crowlesmith, I.; Fluit, C.; Kampman, A.; Broekstra, J.; Mulligen, E. van: Exploring large document repositories with RDF technology : the DOPE project (2004) 0.00
    7.6892605E-4 = product of:
      0.0069203344 = sum of:
        0.0069203344 = product of:
          0.013840669 = sum of:
            0.013840669 = weight(_text_:web in 762) [ClassicSimilarity], result of:
              0.013840669 = score(doc=762,freq=2.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.14422815 = fieldWeight in 762, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03125 = fieldNorm(doc=762)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Abstract
    This thesaurus-based search system uses automatic indexing, RDF-based querying, and concept-based visualization of results to support exploration of large online document repositories. Innovative research institutes rely on the availability of complete and accurate information about new research and development. Information providers such as Elsevier make it their business to provide the required information in a cost-effective way. The Semantic Web will likely contribute significantly to this effort because it facilitates access to an unprecedented quantity of data. The DOPE project (Drug Ontology Project for Elsevier) explores ways to provide access to multiple lifescience information sources through a single interface. With the unremitting growth of scientific information, integrating access to all this information remains an important problem, primarily because the information sources involved are so heterogeneous. Sources might use different syntactic standards (syntactic heterogeneity), organize information in different ways (structural heterogeneity), and even use different terminologies to refer to the same information (semantic heterogeneity). Integrated access hinges on the ability to address these different kinds of heterogeneity. Also, mental models and keywords for accessing data generally diverge between subject areas and communities; hence, many different ontologies have emerged. An ideal architecture must therefore support the disclosure of distributed and heterogeneous data sources through different ontologies. To serve this need, we've developed a thesaurus-based search system that uses automatic indexing, RDF-based querying, and concept-based visualization. We describe here the conversion of an existing proprietary thesaurus to an open standard format, a generic architecture for thesaurus-based information access, an innovative user interface, and results of initial user studies with the resulting DOPE system.
  9. Herre, H.: General Formal Ontology (GFO) : a foundational ontology for conceptual modelling (2010) 0.00
    7.6892605E-4 = product of:
      0.0069203344 = sum of:
        0.0069203344 = product of:
          0.013840669 = sum of:
            0.013840669 = weight(_text_:web in 771) [ClassicSimilarity], result of:
              0.013840669 = score(doc=771,freq=2.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.14422815 = fieldWeight in 771, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03125 = fieldNorm(doc=771)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Abstract
    Research in ontology has in recent years become widespread in the field of information systems, in distinct areas of sciences, in business, in economy, and in industry. The importance of ontologies is increasingly recognized in fields diverse as in e-commerce, semantic web, enterprise, information integration, qualitative modelling of physical systems, natural language processing, knowledge engineering, and databases. Ontologies provide formal specifications and harmonized definitions of concepts used to represent knowledge of specific domains. An ontology supplies a unifying framework for communication and establishes the basis of the knowledge about a specific domain. The term ontology has two meanings, it denotes, on the one hand, a research area, on the other hand, a system of organized knowledge. A system of knowledge may exhibit various degrees of formality; in the strongest sense it is an axiomatized and formally represented theory. which is denoted throughout this paper by the term axiomatized ontology. We use the term formal ontology to name an area of research which is becoming a science similar as formal or mathematical logic. Formal ontology is an evolving science which is concerned with the systematic development of axiomatic theories describing forms, modes, and views of being of the world at different levels of abstraction and granularity. Formal ontology combines the methods of mathematical logic with principles of philosophy, but also with the methods of artificial intelligence and linguistics. At themost general level of abstraction, formal ontology is concerned with those categories that apply to every area of the world. The application of formal ontology to domains at different levels of generality yields knowledge systems which are called, according to the level of abstraction, Top Level Ontologies or Foundational Ontologies, Core Domain or Domain Ontologies. Top level or foundational ontologies apply to every area of the world, in contrast to the various Generic, Domain Core or Domain Ontologies, which are associated to more restricted fields of interest. A foundational ontology can serve as a unifying framework for representation and integration of knowledge and may support the communication and harmonisation of conceptual systems. The current paper presents an overview about the current stage of the foundational ontology GFO.
  10. Koopman, B.; Zuccon, G.; Bruza, P.; Sitbon, L.; Lawley, M.: Information retrieval as semantic inference : a graph Inference model applied to medical search (2016) 0.00
    7.6892605E-4 = product of:
      0.0069203344 = sum of:
        0.0069203344 = product of:
          0.013840669 = sum of:
            0.013840669 = weight(_text_:web in 3260) [ClassicSimilarity], result of:
              0.013840669 = score(doc=3260,freq=2.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.14422815 = fieldWeight in 3260, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3260)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Abstract
    This paper presents a Graph Inference retrieval model that integrates structured knowledge resources, statistical information retrieval methods and inference in a unified framework. Key components of the model are a graph-based representation of the corpus and retrieval driven by an inference mechanism achieved as a traversal over the graph. The model is proposed to tackle the semantic gap problem-the mismatch between the raw data and the way a human being interprets it. We break down the semantic gap problem into five core issues, each requiring a specific type of inference in order to be overcome. Our model and evaluation is applied to the medical domain because search within this domain is particularly challenging and, as we show, often requires inference. In addition, this domain features both structured knowledge resources as well as unstructured text. Our evaluation shows that inference can be effective, retrieving many new relevant documents that are not retrieved by state-of-the-art information retrieval models. We show that many retrieved documents were not pooled by keyword-based search methods, prompting us to perform additional relevance assessment on these new documents. A third of the newly retrieved documents judged were found to be relevant. Our analysis provides a thorough understanding of when and how to apply inference for retrieval, including a categorisation of queries according to the effect of inference. The inference mechanism promoted recall by retrieving new relevant documents not found by previous keyword-based approaches. In addition, it promoted precision by an effective reranking of documents. When inference is used, performance gains can generally be expected on hard queries. However, inference should not be applied universally: for easy, unambiguous queries and queries with few relevant documents, inference did adversely affect effectiveness. These conclusions reflect the fact that for retrieval as inference to be effective, a careful balancing act is involved. Finally, although the Graph Inference model is developed and applied to medical search, it is a general retrieval model applicable to other areas such as web search, where an emerging research trend is to utilise structured knowledge resources for more effective semantic search.
  11. Madalli, D.P.; Chatterjee, U.; Dutta, B.: ¬An analytical approach to building a core ontology for food (2017) 0.00
    7.6892605E-4 = product of:
      0.0069203344 = sum of:
        0.0069203344 = product of:
          0.013840669 = sum of:
            0.013840669 = weight(_text_:web in 3362) [ClassicSimilarity], result of:
              0.013840669 = score(doc=3362,freq=2.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.14422815 = fieldWeight in 3362, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3362)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Abstract
    Purpose The purpose of this paper is to demonstrate the construction of a core ontology for food. To construct the core ontology, the authors propose here an approach called, yet another methodology for ontology plus (YAMO+). The goal is to exhibit the construction of a core ontology for a domain, which can be further extended and converted into application ontologies. Design/methodology/approach To motivate the construction of the core ontology for food, the authors have first articulated a set of application scenarios. The idea is that the constructed core ontology can be used to build application-specific ontologies for those scenarios. As part of the developmental approach to core ontology, the authors have proposed a methodology called YAMO+. It is designed following the theory of analytico-synthetic classification. YAMO+ is generic in nature and can be applied to build core ontologies for any domain. Findings Construction of a core ontology needs a thorough understanding of the domain and domain requirements. There are various challenges involved in constructing a core ontology as discussed in this paper. The proposed approach has proven to be sturdy enough to face the challenges that the construction of a core ontology poses. It is observed that core ontology is amenable to conversion to an application ontology. Practical implications The constructed core ontology for domain food can be readily used for developing application ontologies related to food. The proposed methodology YAMO+ can be applied to build core ontologies for any domain. Originality/value As per the knowledge, the proposed approach is the first attempt based on the study of the state of the art literature, in terms of, a formal approach to the design of a core ontology. Also, the constructed core ontology for food is the first one as there is no such ontology available on the web for domain food.
  12. Fischer, D.H.: ¬Ein Lehrbeispiel für eine Ontologie : OpenCyc (2004) 0.00
    6.728103E-4 = product of:
      0.0060552927 = sum of:
        0.0060552927 = product of:
          0.012110585 = sum of:
            0.012110585 = weight(_text_:web in 4568) [ClassicSimilarity], result of:
              0.012110585 = score(doc=4568,freq=2.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.12619963 = fieldWeight in 4568, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=4568)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Abstract
    Es wird ein einführender Überblick über das seit Frühjahr 2002 allgemein verfügbare Ontologiesystem OpenCyc und seine gegenwärtige Wissensbasis gegeben. Das System ist Prototyp eines logikbasierten Wissensrepräsentationssystems und der lnhalt der fortschreib-baren Wissensbasis ist eine universelle Dachontologie, die als ein Extrakt aus langjähriger Erfahrung mit ihrer Anwendung angesehen werden kann. Die Wissensrepräsentationssprache CycL von OpenCyc konkurriert mit der bisher weniger ausdrucksstarken Sprache OWL, die von den W3C-Gremien für das "Semantic Web"standardisiert wird.
  13. Khoo, S.G.; Na, J.-C.: Semantic relations in information science (2006) 0.00
    5.766945E-4 = product of:
      0.0051902505 = sum of:
        0.0051902505 = product of:
          0.010380501 = sum of:
            0.010380501 = weight(_text_:web in 1978) [ClassicSimilarity], result of:
              0.010380501 = score(doc=1978,freq=2.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.108171105 = fieldWeight in 1978, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=1978)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Abstract
    This chapter examines the nature of semantic relations and their main applications in information science. The nature and types of semantic relations are discussed from the perspectives of linguistics and psychology. An overview of the semantic relations used in knowledge structures such as thesauri and ontologies is provided, as well as the main techniques used in the automatic extraction of semantic relations from text. The chapter then reviews the use of semantic relations in information extraction, information retrieval, question-answering, and automatic text summarization applications. Concepts and relations are the foundation of knowledge and thought. When we look at the world, we perceive not a mass of colors but objects to which we automatically assign category labels. Our perceptual system automatically segments the world into concepts and categories. Concepts are the building blocks of knowledge; relations act as the cement that links concepts into knowledge structures. We spend much of our lives identifying regular associations and relations between objects, events, and processes so that the world has an understandable structure and predictability. Our lives and work depend on the accuracy and richness of this knowledge structure and its web of relations. Relations are needed for reasoning and inferencing. Chaffin and Herrmann (1988b, p. 290) noted that "relations between ideas have long been viewed as basic to thought, language, comprehension, and memory." Aristotle's Metaphysics (Aristotle, 1961; McKeon, expounded on several types of relations. The majority of the 30 entries in a section of the Metaphysics known today as the Philosophical Lexicon referred to relations and attributes, including cause, part-whole, same and opposite, quality (i.e., attribute) and kind-of, and defined different types of each relation. Hume (1955) pointed out that there is a connection between successive ideas in our minds, even in our dreams, and that the introduction of an idea in our mind automatically recalls an associated idea. He argued that all the objects of human reasoning are divided into relations of ideas and matters of fact and that factual reasoning is founded on the cause-effect relation. His Treatise of Human Nature identified seven kinds of relations: resemblance, identity, relations of time and place, proportion in quantity or number, degrees in quality, contrariety, and causation. Mill (1974, pp. 989-1004) discoursed on several types of relations, claiming that all things are either feelings, substances, or attributes, and that attributes can be a quality (which belongs to one object) or a relation to other objects.

Authors

Years

Languages

  • e 157
  • d 34

Types

  • el 34
  • x 1
  • More… Less…