Search (77 results, page 1 of 4)

  • × theme_ss:"Wissensrepräsentation"
  • × type_ss:"el"
  • × year_i:[2000 TO 2010}
  1. Tudhope, D.; Hodge, G.: Terminology registries (2007) 0.03
    0.031078164 = product of:
      0.062156327 = sum of:
        0.062156327 = sum of:
          0.006079746 = weight(_text_:a in 539) [ClassicSimilarity], result of:
            0.006079746 = score(doc=539,freq=2.0), product of:
              0.04772363 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.041389145 = queryNorm
              0.12739488 = fieldWeight in 539, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.078125 = fieldNorm(doc=539)
          0.056076583 = weight(_text_:22 in 539) [ClassicSimilarity], result of:
            0.056076583 = score(doc=539,freq=2.0), product of:
              0.14493774 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.041389145 = queryNorm
              0.38690117 = fieldWeight in 539, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.078125 = fieldNorm(doc=539)
      0.5 = coord(1/2)
    
    Abstract
    A discussion on current initiatives regarding terminology registries.
    Date
    26.12.2011 13:22:07
  2. Beppler, F.D.; Fonseca, F.T.; Pacheco, R.C.S.: Hermeneus: an architecture for an ontology-enabled information retrieval (2008) 0.02
    0.02047082 = product of:
      0.04094164 = sum of:
        0.04094164 = sum of:
          0.007295696 = weight(_text_:a in 3261) [ClassicSimilarity], result of:
            0.007295696 = score(doc=3261,freq=8.0), product of:
              0.04772363 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.041389145 = queryNorm
              0.15287387 = fieldWeight in 3261, product of:
                2.828427 = tf(freq=8.0), with freq of:
                  8.0 = termFreq=8.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046875 = fieldNorm(doc=3261)
          0.033645947 = weight(_text_:22 in 3261) [ClassicSimilarity], result of:
            0.033645947 = score(doc=3261,freq=2.0), product of:
              0.14493774 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.041389145 = queryNorm
              0.23214069 = fieldWeight in 3261, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=3261)
      0.5 = coord(1/2)
    
    Abstract
    Ontologies improve IR systems regarding its retrieval and presentation of information, which make the task of finding information more effective, efficient, and interactive. In this paper we argue that ontologies also greatly improve the engineering of such systems. We created a framework that uses ontology to drive the process of engineering an IR system. We developed a prototype that shows how a domain specialist without knowledge in the IR field can build an IR system with interactive components. The resulting system provides support for users not only to find their information needs but also to extend their state of knowledge. This way, our approach to ontology-enabled information retrieval addresses both the engineering aspect described here and also the usability aspect described elsewhere.
    Date
    28.11.2016 12:43:22
    Type
    a
  3. Definition of the CIDOC Conceptual Reference Model (2003) 0.02
    0.019402392 = product of:
      0.038804784 = sum of:
        0.038804784 = sum of:
          0.005158836 = weight(_text_:a in 1652) [ClassicSimilarity], result of:
            0.005158836 = score(doc=1652,freq=4.0), product of:
              0.04772363 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.041389145 = queryNorm
              0.10809815 = fieldWeight in 1652, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046875 = fieldNorm(doc=1652)
          0.033645947 = weight(_text_:22 in 1652) [ClassicSimilarity], result of:
            0.033645947 = score(doc=1652,freq=2.0), product of:
              0.14493774 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.041389145 = queryNorm
              0.23214069 = fieldWeight in 1652, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=1652)
      0.5 = coord(1/2)
    
    Abstract
    This document is the formal definition of the CIDOC Conceptual Reference Model ("CRM"), a formal ontology intended to facilitate the integration, mediation and interchange of heterogeneous cultural heritage information. The CRM is the culmination of more than a decade of standards development work by the International Committee for Documentation (CIDOC) of the International Council of Museums (ICOM). Work on the CRM itself began in 1996 under the auspices of the ICOM-CIDOC Documentation Standards Working Group. Since 2000, development of the CRM has been officially delegated by ICOM-CIDOC to the CIDOC CRM Special Interest Group, which collaborates with the ISO working group ISO/TC46/SC4/WG9 to bring the CRM to the form and status of an International Standard.
    Date
    6. 8.2010 14:22:28
  4. Bittner, T.; Donnelly, M.; Winter, S.: Ontology and semantic interoperability (2006) 0.02
    0.018646898 = product of:
      0.037293795 = sum of:
        0.037293795 = sum of:
          0.003647848 = weight(_text_:a in 4820) [ClassicSimilarity], result of:
            0.003647848 = score(doc=4820,freq=2.0), product of:
              0.04772363 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.041389145 = queryNorm
              0.07643694 = fieldWeight in 4820, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046875 = fieldNorm(doc=4820)
          0.033645947 = weight(_text_:22 in 4820) [ClassicSimilarity], result of:
            0.033645947 = score(doc=4820,freq=2.0), product of:
              0.14493774 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.041389145 = queryNorm
              0.23214069 = fieldWeight in 4820, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=4820)
      0.5 = coord(1/2)
    
    Date
    3.12.2016 18:39:22
    Type
    a
  5. OWL Web Ontology Language Test Cases (2004) 0.01
    0.011215316 = product of:
      0.022430632 = sum of:
        0.022430632 = product of:
          0.044861265 = sum of:
            0.044861265 = weight(_text_:22 in 4685) [ClassicSimilarity], result of:
              0.044861265 = score(doc=4685,freq=2.0), product of:
                0.14493774 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.041389145 = queryNorm
                0.30952093 = fieldWeight in 4685, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4685)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    14. 8.2011 13:33:22
  6. Knorz, G.; Rein, B.: Semantische Suche in einer Hochschulontologie : Ontologie-basiertes Information-Filtering und -Retrieval mit relationalen Datenbanken (2005) 0.01
    0.009813401 = product of:
      0.019626802 = sum of:
        0.019626802 = product of:
          0.039253604 = sum of:
            0.039253604 = weight(_text_:22 in 4324) [ClassicSimilarity], result of:
              0.039253604 = score(doc=4324,freq=2.0), product of:
                0.14493774 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.041389145 = queryNorm
                0.2708308 = fieldWeight in 4324, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4324)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    11. 2.2011 18:22:25
  7. Kottmann, N.; Studer, T.: Improving semantic query answering (2006) 0.00
    0.003439224 = product of:
      0.006878448 = sum of:
        0.006878448 = product of:
          0.013756896 = sum of:
            0.013756896 = weight(_text_:a in 3979) [ClassicSimilarity], result of:
              0.013756896 = score(doc=3979,freq=16.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.28826174 = fieldWeight in 3979, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3979)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The retrieval problem is one of the main reasoning tasks for knowledge base systems. Given a knowledge base K and a concept C, the retrieval problem consists of finding all individuals a for which K logically entails C(a). We present an approach to answer retrieval queries over (a restriction of) OWL ontologies. Our solution is based on reducing the retrieval problem to a problem of evaluating an SQL query over a database constructed from the original knowledge base. We provide complete answers to retrieval problems. Still, our system performs very well as is shown by a standard benchmark.
  8. Broughton, V.: Facet analysis as a fundamental theory for structuring subject organization tools (2007) 0.00
    0.0027189455 = product of:
      0.005437891 = sum of:
        0.005437891 = product of:
          0.010875782 = sum of:
            0.010875782 = weight(_text_:a in 537) [ClassicSimilarity], result of:
              0.010875782 = score(doc=537,freq=10.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.22789092 = fieldWeight in 537, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=537)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The presentation will examine the potential of facet analysis as a basis for determining status and relationships of concepts in subject based tools using a controlled vocabulary, and the extent to which it can be used as a general theory of knowledge organization as opposed to a methodology for structuring classifications only.
  9. Prieto-Díaz, R.: ¬A faceted approach to building ontologies (2002) 0.00
    0.002579418 = product of:
      0.005158836 = sum of:
        0.005158836 = product of:
          0.010317672 = sum of:
            0.010317672 = weight(_text_:a in 2259) [ClassicSimilarity], result of:
              0.010317672 = score(doc=2259,freq=16.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.2161963 = fieldWeight in 2259, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2259)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    An ontology is "an explicit conceptualization of a domain of discourse, and thus provides a shared and common understanding of the domain." We have been producing ontologies for millennia to understand and explain our rationale and environment. From Plato's philosophical framework to modern day classification systems, ontologies are, in most cases, the product of extensive analysis and categorization. Only recently has the process of building ontologies become a research topic of interest. Today, ontologies are built very much ad-hoc. A terminology is first developed providing a controlled vocabulary for the subject area or domain of interest, then it is organized into a taxonomy where key concepts are identified, and finally these concepts are defined and related to create an ontology. The intent of this paper is to show that domain analysis methods can be used for building ontologies. Domain analysis aims at generic models that represent groups of similar systems within an application domain. In this sense, it deals with categorization of common objects and operations, with clear, unambiguous definitions of them and with defining their relationships.
    Type
    a
  10. Assem, M. van; Malaisé, V.; Miles, A.; Schreiber, G.: ¬A method to convert thesauri to SKOS (2006) 0.00
    0.0024128247 = product of:
      0.0048256493 = sum of:
        0.0048256493 = product of:
          0.009651299 = sum of:
            0.009651299 = weight(_text_:a in 4642) [ClassicSimilarity], result of:
              0.009651299 = score(doc=4642,freq=14.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.20223314 = fieldWeight in 4642, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4642)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Thesauri can be useful resources for indexing and retrieval on the Semantic Web, but often they are not published in RDF/OWL. To convert thesauri to RDF for use in Semantic Web applications and to ensure the quality and utility of the conversion a structured method is required. Moreover, if different thesauri are to be interoperable without complicated mappings, a standard schema for thesauri is required. This paper presents a method for conversion of thesauri to the SKOS RDF/OWL schema, which is a proposal for such a standard under development by W3Cs Semantic Web Best Practices Working Group. We apply the method to three thesauri: IPSV, GTAA and MeSH. With these case studies we evaluate our method and the applicability of SKOS for representing thesauri.
  11. Tzitzikas, Y.; Spyratos, N.; Constantopoulos, P.; Analyti, A.: Extended faceted ontologies (2002) 0.00
    0.0024128247 = product of:
      0.0048256493 = sum of:
        0.0048256493 = product of:
          0.009651299 = sum of:
            0.009651299 = weight(_text_:a in 2280) [ClassicSimilarity], result of:
              0.009651299 = score(doc=2280,freq=14.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.20223314 = fieldWeight in 2280, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2280)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    A faceted ontology consists of a set of facets, where each facet consists of a predefined set of terms structured by a subsumption relation. We propose two extensions of faceted ontologies, which allow inferring conjunctions of terms that are valid in the underlying domain. We give a model-theoretic interpretation to these extended faceted ontologies and we provide mechanisms for inferring the valid conjunctions of terms. This inference service can be exploited for preventing errors during the indexing process and for deriving navigation trees that are suitable for browsing. The proposed scheme has several advantages by comparison to the hierarchical classification schemes that are currently used, namely: conceptual clarity: it is easier to understand, compactness: it takes less space, and scalability: the update operations can be formulated easier and be performed more efficiently.
    Type
    a
  12. Riva, P.; Doerr, M.; Zumer, M.: FRBRoo: enabling a common view of information from memory institutions (2008) 0.00
    0.0024032309 = product of:
      0.0048064617 = sum of:
        0.0048064617 = product of:
          0.0096129235 = sum of:
            0.0096129235 = weight(_text_:a in 3743) [ClassicSimilarity], result of:
              0.0096129235 = score(doc=3743,freq=20.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.20142901 = fieldWeight in 3743, product of:
                  4.472136 = tf(freq=20.0), with freq of:
                    20.0 = termFreq=20.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3743)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In 2008 the FRBR/CRM Harmonisation Working Group has achieved a major milestone: a complete version of the object-oriented definition of FRBR (FRBRoo) was released for comment. After a brief overview of the history and context of the Working Group, this paper focuses on the primary contributions resulting from this work. - FRBRoo is a self-contained document which expresses the concepts of FRBR using the objectoriented methodology and framework of CIDOC CRM. It is an alternative view on library conceptualisation for a different purpose, not a replacement for FRBR. - This 'translation' process presented an opportunity to verify and confirm FRBR's internal consistency. - FRBRoo offers a common view of library and museum documentation as two kinds of information from memory institutions. Such a common view is necessary to provide interoperable information systems for all users interested in accessing common or related content. - The analysis provided an opportunity for mutual enrichment of FRBR and CIDOC CRM. Examples include: - - Addition of the modelling of time and events to FRBR, which can be seen in its application to the publishing process - - Clarification of the manifestation entity - - Explicit modelling of performances and recordings in FRBR - - Adding the work entity to CRM - - Adding the identifier assignment process to CRM. - Producing a formalisation which is more suited for implementation with object-oriented tools, and which facilitates the testing and adoption of FRBR concepts in implementations with different functional specifications and in different environments.
  13. Fischer, D.H.: Converting a thesaurus to OWL : Notes on the paper "The National Cancer Institute's Thesaurus and Ontology" (2004) 0.00
    0.0023790773 = product of:
      0.0047581545 = sum of:
        0.0047581545 = product of:
          0.009516309 = sum of:
            0.009516309 = weight(_text_:a in 2362) [ClassicSimilarity], result of:
              0.009516309 = score(doc=2362,freq=40.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.19940455 = fieldWeight in 2362, product of:
                  6.3245554 = tf(freq=40.0), with freq of:
                    40.0 = termFreq=40.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=2362)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The paper analysed here is a kind of position paper. In order to get a better under-standing of the reported work I used the retrieval interface of the thesaurus, the so-called NCI DTS Browser accessible via the Web3, and I perused the cited OWL file4 with numerous "Find" and "Find next" string searches. In addition the file was im-ported into Protégé 2000, Release 2.0, with OWL Plugin 1.0 and Racer Plugin 1.7.14. At the end of the paper's introduction the authors say: "In the following sections, this paper will describe the terminology development process at NCI, and the issues associated with converting a description logic based nomenclature to a semantically rich OWL ontology." While I will not deal with the first part, i.e. the terminology development process at NCI, I do not see the thesaurus as a description logic based nomenclature, or its cur-rent state and conversion already result in a "rich" OWL ontology. What does "rich" mean here? According to my view there is a great quantity of concepts and links but a very poor description logic structure which enables inferences. And what does the fol-lowing really mean, which is said a few lines previously: "Although editors have defined a number of named ontologic relations to support the description-logic based structure of the Thesaurus, additional relation-ships are considered for inclusion as required to support dependent applications."
    According to my findings several relations available in the thesaurus query interface as "roles", are not used, i.e. there are not yet any assertions with them. And those which are used do not contribute to complete concept definitions of concepts which represent thesaurus main entries. In other words: The authors claim to already have a "description logic based nomenclature", where there is not yet one which deserves that title by being much more than a thesaurus with strict subsumption and additional inheritable semantic links. In the last section of the paper the authors say: "The most time consuming process in this conversion was making a careful analysis of the Thesaurus to understand the best way to translate it into OWL." "For other conversions, these same types of distinctions and decisions must be made. The expressive power of a proprietary encoding can vary widely from that in OWL or RDF. Understanding the original semantics and engineering a solution that most closely duplicates it is critical for creating a useful and accu-rate ontology." My question is: What decisions were made and are they exemplary, can they be rec-ommended as "the best way"? I raise strong doubts with respect to that, and I miss more profound discussions of the issues at stake. The following notes are dedicated to a critical description and assessment of the results of that conversion activity. They are written in a tutorial style more or less addressing students, but myself being a learner especially in the field of medical knowledge representation I do not speak "ex cathedra".
  14. Miles, A.; Matthews, B.; Beckett, D.; Brickley, D.; Wilson, M.; Rogers, N.: SKOS: A language to describe simple knowledge structures for the web (2005) 0.00
    0.0023790773 = product of:
      0.0047581545 = sum of:
        0.0047581545 = product of:
          0.009516309 = sum of:
            0.009516309 = weight(_text_:a in 517) [ClassicSimilarity], result of:
              0.009516309 = score(doc=517,freq=40.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.19940455 = fieldWeight in 517, product of:
                  6.3245554 = tf(freq=40.0), with freq of:
                    40.0 = termFreq=40.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=517)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Content
    "Textual content-based search engines for the web have a number of limitations. Firstly, many web resources have little or no textual content (images, audio or video streams etc.) Secondly, precision is low where natural language terms have overloaded meaning (e.g. 'bank', 'watch', 'chip' etc.) Thirdly, recall is incomplete where the search does not take account of synonyms or quasi-synonyms. Fourthly, there is no basis for assisting a user in modifying (expanding, refining, translating) a search based on the meaning of the original search. Fifthly, there is no basis for searching across natural languages, or framing search queries in terms of symbolic languages. The Semantic Web is a framework for creating, managing, publishing and searching semantically rich metadata for web resources. Annotating web resources with precise and meaningful statements about conceptual aspects of their content provides a basis for overcoming all of the limitations of textual content-based search engines listed above. Creating this type of metadata requires that metadata generators are able to refer to shared repositories of meaning: 'vocabularies' of concepts that are common to a community, and describe the domain of interest for that community.
    This type of effort is common in the digital library community, where a group of experts will interact with a user community to create a thesaurus for a specific domain (e.g. the Art & Architecture Thesaurus AAT AAT) or an overarching classification scheme (e.g. the Dewey Decimal Classification). A similar type of activity is being undertaken more recently in a less centralised manner by web communities, producing for example the DMOZ web directory DMOZ, or the Topic Exchange for weblog topics Topic Exchange. The web, including the semantic web, provides a medium within which communities can interact and collaboratively build and use vocabularies of concepts. A simple language is required that allows these communities to express the structure and content of their vocabularies in a machine-understandable way, enabling exchange and reuse. The Resource Description Framework (RDF) is an ideal language for making statements about web resources and publishing metadata. However, RDF provides only the low level semantics required to form metadata statements. RDF vocabularies must be built on top of RDF to support the expression of more specific types of information within metadata. Ontology languages such as OWL OWL add a layer of expressive power to RDF, and provide powerful tools for defining complex conceptual structures, which can be used to generate rich metadata. However, the class-oriented, logically precise modelling required to construct useful web ontologies is demanding in terms of expertise, effort, and therefore cost. In many cases this type of modelling may be superfluous or unsuited to requirements. Therefore there is a need for a language for expressing vocabularies of concepts for use in semantically rich metadata, that is powerful enough to support semantically enhanced search, but simple enough to be undemanding in terms of the cost and expertise required to use it."
  15. Quick Guide to Publishing a Thesaurus on the Semantic Web (2008) 0.00
    0.0023790773 = product of:
      0.0047581545 = sum of:
        0.0047581545 = product of:
          0.009516309 = sum of:
            0.009516309 = weight(_text_:a in 4656) [ClassicSimilarity], result of:
              0.009516309 = score(doc=4656,freq=10.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.19940455 = fieldWeight in 4656, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4656)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This document describes in brief how to express the content and structure of a thesaurus, and metadata about a thesaurus, in RDF. Using RDF allows data to be linked to and/or merged with other RDF data by semantic web applications. The Semantic Web, which is based on the Resource Description Framework (RDF), provides a common framework that allows data to be shared and reused across application, enterprise, and community boundaries.
    Editor
    Miles, A.
  16. Koenderink, N.J.J.P.; Assem, M. van; Hulzebos, J.L.; Broekstra, J.; Top, J.L.: ROC: a method for proto-ontology construction by domain experts (2008) 0.00
    0.002279905 = product of:
      0.00455981 = sum of:
        0.00455981 = product of:
          0.00911962 = sum of:
            0.00911962 = weight(_text_:a in 4647) [ClassicSimilarity], result of:
              0.00911962 = score(doc=4647,freq=18.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.19109234 = fieldWeight in 4647, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4647)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Ontology construction is a labour-intensive and costly process. Even though many formal and semi-formal vocabularies are available, creating an ontology for a specific application is hindered in a number of ways. Firstly, the process of elicitating concepts is a time consuming and strenuous process. Secondly, it is difficult to keep focus. Thirdly, technical modelling constructs are hard to understand for the uninitiated. We propose ROC as a method to cope with these problems. ROC builds on well-known approaches for ontology construction. However, we reuse existing sources to generate a repository of proposed associations. ROC assists in efficiently putting forward all relevant concepts and relations by providing a large set of potential candidate associations. Secondly, rather than using intermediate representations of formal constructs we confront the domain expert with 'natural-language-like' statements generated from RDF-based triples. Moreover, we strictly separate the roles of problem owner, domain expert and knowledge engineer, each having his own responsibilities and skills. The domain expert and problem owner keep focus by monitoring a well-defined application purpose. We have implemented an initial set of tools to support ROC. This paper describes the ROC method and two application cases in which we evaluate the overall approach.
  17. Suchanek, F.M.; Kasneci, G.; Weikum, G.: YAGO: a core of semantic knowledge unifying WordNet and Wikipedia (2007) 0.00
    0.0022338415 = product of:
      0.004467683 = sum of:
        0.004467683 = product of:
          0.008935366 = sum of:
            0.008935366 = weight(_text_:a in 3403) [ClassicSimilarity], result of:
              0.008935366 = score(doc=3403,freq=12.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.18723148 = fieldWeight in 3403, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3403)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    We present YAGO, a light-weight and extensible ontology with high coverage and quality. YAGO builds on entities and relations and currently contains more than 1 million entities and 5 million facts. This includes the Is-A hierarchy as well as non-taxonomic relations between entities (such as hasWonPrize). The facts have been automatically extracted from Wikipedia and unified with WordNet, using a carefully designed combination of rule-based and heuristic methods described in this paper. The resulting knowledge base is a major step beyond WordNet: in quality by adding knowledge about individuals like persons, organizations, products, etc. with their semantic relationships - and in quantity by increasing the number of facts by more than an order of magnitude. Our empirical evaluation of fact correctness shows an accuracy of about 95%. YAGO is based on a logically clean model, which is decidable, extensible, and compatible with RDFS. Finally, we show how YAGO can be further extended by state-of-the-art information extraction techniques.
  18. Assem, M. van; Gangemi, A.; Schreiber, G.: Conversion of WordNet to a standard RDF/OWL representation (2006) 0.00
    0.0022338415 = product of:
      0.004467683 = sum of:
        0.004467683 = product of:
          0.008935366 = sum of:
            0.008935366 = weight(_text_:a in 4641) [ClassicSimilarity], result of:
              0.008935366 = score(doc=4641,freq=12.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.18723148 = fieldWeight in 4641, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4641)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This paper presents an overview of the work in progress at the W3C to produce a standard conversion of WordNet to the RDF/OWL representation language in use in the SemanticWeb community. Such a standard representation is useful to provide application developers a high-quality resource and to promote interoperability. Important requirements in this conversion process are that it should be complete and should stay close to WordNet's conceptual model. The paper explains the steps taken to produce the conversion and details design decisions such as the composition of the class hierarchy and properties, the addition of suitable OWL semantics and the chosen format of the URIs. Additional topics include a strategy to incorporate OWL and RDFS semantics in one schema such that both RDF(S) infrastructure and OWL infrastructure can interpret the information correctly, problems encountered in understanding the Prolog source files and the description of the two versions that are provided (Basic and Full) to accommodate different usages of WordNet.
  19. OWL Web Ontology Language Semantics and Abstract Syntax (2004) 0.00
    0.0022338415 = product of:
      0.004467683 = sum of:
        0.004467683 = product of:
          0.008935366 = sum of:
            0.008935366 = weight(_text_:a in 4683) [ClassicSimilarity], result of:
              0.008935366 = score(doc=4683,freq=12.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.18723148 = fieldWeight in 4683, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4683)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This description of OWL, the Web Ontology Language being designed by the W3C Web Ontology Working Group, contains a high-level abstract syntax for both OWL DL and OWL Lite, sublanguages of OWL. A model-theoretic semantics is given to provide a formal meaning for OWL ontologies written in this abstract syntax. A model-theoretic semantics in the form of an extension to the RDF semantics is also given to provide a formal meaning for OWL ontologies as RDF graphs (OWL Full). A mapping from the abstract syntax to RDF graphs is given and the two model theories are shown to have the same consequences on OWL ontologies that can be written in the abstract syntax.
  20. SKOS Simple Knowledge Organization System Reference : W3C Recommendation 18 August 2009 (2009) 0.00
    0.0022338415 = product of:
      0.004467683 = sum of:
        0.004467683 = product of:
          0.008935366 = sum of:
            0.008935366 = weight(_text_:a in 4688) [ClassicSimilarity], result of:
              0.008935366 = score(doc=4688,freq=12.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.18723148 = fieldWeight in 4688, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4688)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This document defines the Simple Knowledge Organization System (SKOS), a common data model for sharing and linking knowledge organization systems via the Web. Many knowledge organization systems, such as thesauri, taxonomies, classification schemes and subject heading systems, share a similar structure, and are used in similar applications. SKOS captures much of this similarity and makes it explicit, to enable data and technology sharing across diverse applications. The SKOS data model provides a standard, low-cost migration path for porting existing knowledge organization systems to the Semantic Web. SKOS also provides a lightweight, intuitive language for developing and sharing new knowledge organization systems. It may be used on its own, or in combination with formal knowledge representation languages such as the Web Ontology language (OWL). This document is the normative specification of the Simple Knowledge Organization System. It is intended for readers who are involved in the design and implementation of information systems, and who already have a good understanding of Semantic Web technology, especially RDF and OWL. For an informative guide to using SKOS, see the [SKOS-PRIMER].
    Editor
    Miles, A. u. S. Bechhofer

Authors

Languages

  • e 70
  • d 4
  • el 1
  • More… Less…

Types

  • a 20
  • n 11
  • r 1
  • s 1
  • x 1
  • More… Less…