Search (10 results, page 1 of 1)

  • × theme_ss:"Wissensrepräsentation"
  • × type_ss:"el"
  • × year_i:[2010 TO 2020}
  1. Networked Knowledge Organisation Systems and Services - TPDL 2011 : The 10th European Networked Knowledge Organisation Systems (NKOS) Workshop (2011) 0.01
    0.010478289 = product of:
      0.041913155 = sum of:
        0.041913155 = weight(_text_:services in 6033) [ClassicSimilarity], result of:
          0.041913155 = score(doc=6033,freq=2.0), product of:
            0.17221296 = queryWeight, product of:
              3.6713707 = idf(docFreq=3057, maxDocs=44218)
              0.046906993 = queryNorm
            0.2433798 = fieldWeight in 6033, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6713707 = idf(docFreq=3057, maxDocs=44218)
              0.046875 = fieldNorm(doc=6033)
      0.25 = coord(1/4)
    
  2. Drewer, P.; Massion, F; Pulitano, D: Was haben Wissensmodellierung, Wissensstrukturierung, künstliche Intelligenz und Terminologie miteinander zu tun? (2017) 0.01
    0.007944062 = product of:
      0.03177625 = sum of:
        0.03177625 = product of:
          0.0635525 = sum of:
            0.0635525 = weight(_text_:22 in 5576) [ClassicSimilarity], result of:
              0.0635525 = score(doc=5576,freq=2.0), product of:
                0.1642603 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046906993 = queryNorm
                0.38690117 = fieldWeight in 5576, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=5576)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    13.12.2017 14:17:22
  3. Baker, T.; Bermès, E.; Coyle, K.; Dunsire, G.; Isaac, A.; Murray, P.; Panzer, M.; Schneider, J.; Singer, R.; Summers, E.; Waites, W.; Young, J.; Zeng, M.: Library Linked Data Incubator Group Final Report (2011) 0.01
    0.006985526 = product of:
      0.027942104 = sum of:
        0.027942104 = weight(_text_:services in 4796) [ClassicSimilarity], result of:
          0.027942104 = score(doc=4796,freq=2.0), product of:
            0.17221296 = queryWeight, product of:
              3.6713707 = idf(docFreq=3057, maxDocs=44218)
              0.046906993 = queryNorm
            0.1622532 = fieldWeight in 4796, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6713707 = idf(docFreq=3057, maxDocs=44218)
              0.03125 = fieldNorm(doc=4796)
      0.25 = coord(1/4)
    
    Abstract
    Key recommendations of the report are: - That library leaders identify sets of data as possible candidates for early exposure as Linked Data and foster a discussion about Open Data and rights; - That library standards bodies increase library participation in Semantic Web standardization, develop library data standards that are compatible with Linked Data, and disseminate best-practice design patterns tailored to library Linked Data; - That data and systems designers design enhanced user services based on Linked Data capabilities, create URIs for the items in library datasets, develop policies for managing RDF vocabularies and their URIs, and express library data by re-using or mapping to existing Linked Data vocabularies; - That librarians and archivists preserve Linked Data element sets and value vocabularies and apply library experience in curation and long-term preservation to Linked Data datasets.
  4. Lange, C.: Ontologies and languages for representing mathematical knowledge on the Semantic Web (2011) 0.01
    0.006985526 = product of:
      0.027942104 = sum of:
        0.027942104 = weight(_text_:services in 135) [ClassicSimilarity], result of:
          0.027942104 = score(doc=135,freq=2.0), product of:
            0.17221296 = queryWeight, product of:
              3.6713707 = idf(docFreq=3057, maxDocs=44218)
              0.046906993 = queryNorm
            0.1622532 = fieldWeight in 135, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6713707 = idf(docFreq=3057, maxDocs=44218)
              0.03125 = fieldNorm(doc=135)
      0.25 = coord(1/4)
    
    Abstract
    Mathematics is a ubiquitous foundation of science, technology, and engineering. Specific areas, such as numeric and symbolic computation or logics, enjoy considerable software support. Working mathematicians have recently started to adopt Web 2.0 environment, such as blogs and wikis, but these systems lack machine support for knowledge organization and reuse, and they are disconnected from tools such as computer algebra systems or interactive proof assistants.We argue that such scenarios will benefit from Semantic Web technology. Conversely, mathematics is still underrepresented on the Web of [Linked] Data. There are mathematics-related Linked Data, for example statistical government data or scientific publication databases, but their mathematical semantics has not yet been modeled. We argue that the services for the Web of Data will benefit from a deeper representation of mathematical knowledge. Mathematical knowledge comprises logical and functional structures - formulæ, statements, and theories -, a mixture of rigorous natural language and symbolic notation in documents, application-specific metadata, and discussions about conceptualizations, formalizations, proofs, and (counter-)examples. Our review of approaches to representing these structures covers ontologies for mathematical problems, proofs, interlinked scientific publications, scientific discourse, as well as mathematical metadata vocabularies and domain knowledge from pure and applied mathematics. Many fields of mathematics have not yet been implemented as proper Semantic Web ontologies; however, we show that MathML and OpenMath, the standard XML-based exchange languages for mathematical knowledge, can be fully integrated with RDF representations in order to contribute existing mathematical knowledge to theWeb of Data. We conclude with a roadmap for getting the mathematical Web of Data started: what datasets to publish, how to interlink them, and how to take advantage of these new connections.
  5. Mirizzi, R.: Exploratory browsing in the Web of Data (2011) 0.01
    0.0061123357 = product of:
      0.024449343 = sum of:
        0.024449343 = weight(_text_:services in 4803) [ClassicSimilarity], result of:
          0.024449343 = score(doc=4803,freq=2.0), product of:
            0.17221296 = queryWeight, product of:
              3.6713707 = idf(docFreq=3057, maxDocs=44218)
              0.046906993 = queryNorm
            0.14197156 = fieldWeight in 4803, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6713707 = idf(docFreq=3057, maxDocs=44218)
              0.02734375 = fieldNorm(doc=4803)
      0.25 = coord(1/4)
    
    Abstract
    The Linked Data initiative and the state of the art in semantic technologies led off all brand new search and mash-up applications. The basic idea is to have smarter lookup services for a huge, distributed and social knowledge base. All these applications catch and (re)propose, under a semantic data perspective, the view of the classical Web as a distributed collection of documents to retrieve. The interlinked nature of the Web, and consequently of the Semantic Web, is exploited (just) to collect and aggregate data coming from different sources. Of course, this is a big step forward in search and Web technologies, but if we limit our investi- gation to retrieval tasks, we miss another important feature of the current Web: browsing and in particular exploratory browsing (a.k.a. exploratory search). Thanks to its hyperlinked nature, the Web defined a new way of browsing documents and knowledge: selection by lookup, navigation and trial-and-error tactics were, and still are, exploited by users to search for relevant information satisfying some initial requirements. The basic assumptions behind a lookup search, typical of Information Retrieval (IR) systems, are no more valid in an exploratory browsing context. An IR system, such as a search engine, assumes that: the user has a clear picture of what she is looking for ; she knows the terminology of the specific knowledge space. On the other side, as argued in, the main challenges in exploratory search can be summarized as: support querying and rapid query refinement; other facets and metadata-based result filtering; leverage search context; support learning and understanding; other visualization to support insight/decision making; facilitate collaboration. In Section 3 we will show two applications for exploratory search in the Semantic Web addressing some of the above challenges.
  6. Hoppe, T.: Semantische Filterung : ein Werkzeug zur Steigerung der Effizienz im Wissensmanagement (2013) 0.01
    0.005887897 = product of:
      0.023551589 = sum of:
        0.023551589 = product of:
          0.047103178 = sum of:
            0.047103178 = weight(_text_:management in 2245) [ClassicSimilarity], result of:
              0.047103178 = score(doc=2245,freq=2.0), product of:
                0.15810528 = queryWeight, product of:
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.046906993 = queryNorm
                0.29792285 = fieldWeight in 2245, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.0625 = fieldNorm(doc=2245)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Source
    Open journal of knowledge management. 2013, Ausgabe VII = http://www.community-of-knowledge.de/beitrag/semantische-filterung-ein-werkzeug-zur-steigerung-der-effizienz-im-wissensmanagement/
  7. Bandholtz, T.; Schulte-Coerne, T.; Glaser, R.; Fock, J.; Keller, T.: iQvoc - open source SKOS(XL) maintenance and publishing tool (2010) 0.01
    0.00515191 = product of:
      0.02060764 = sum of:
        0.02060764 = product of:
          0.04121528 = sum of:
            0.04121528 = weight(_text_:management in 604) [ClassicSimilarity], result of:
              0.04121528 = score(doc=604,freq=2.0), product of:
                0.15810528 = queryWeight, product of:
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.046906993 = queryNorm
                0.2606825 = fieldWeight in 604, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=604)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    iQvoc is a new open source SKOS-XL vocabulary management tool developed by the Federal Environment Agency, Germany, and innoQ Deutschland GmbH. Its immediate purpose is maintaining and publishing reference vocabularies in the upcoming Linked Data cloud of environmental information, but it may be easily adapted to host any SKOS- XL compliant vocabulary. iQvoc is implemented as a Ruby on Rails application running on top of JRuby - the Java implementation of the Ruby Programming Language. To increase the user experience when editing content, iQvoc uses heavily the JavaScript library jQuery.
  8. Hollink, L.; Assem, M. van: Estimating the relevance of search results in the Culture-Web : a study of semantic distance measures (2010) 0.00
    0.004766437 = product of:
      0.019065749 = sum of:
        0.019065749 = product of:
          0.038131498 = sum of:
            0.038131498 = weight(_text_:22 in 4649) [ClassicSimilarity], result of:
              0.038131498 = score(doc=4649,freq=2.0), product of:
                0.1642603 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046906993 = queryNorm
                0.23214069 = fieldWeight in 4649, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4649)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    26.12.2011 13:40:22
  9. Monireh, E.; Sarker, M.K.; Bianchi, F.; Hitzler, P.; Doran, D.; Xie, N.: Reasoning over RDF knowledge bases using deep learning (2018) 0.00
    0.003972031 = product of:
      0.015888125 = sum of:
        0.015888125 = product of:
          0.03177625 = sum of:
            0.03177625 = weight(_text_:22 in 4553) [ClassicSimilarity], result of:
              0.03177625 = score(doc=4553,freq=2.0), product of:
                0.1642603 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046906993 = queryNorm
                0.19345059 = fieldWeight in 4553, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4553)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    16.11.2018 14:22:01
  10. Gómez-Pérez, A.; Corcho, O.: Ontology languages for the Semantic Web (2015) 0.00
    0.0036799356 = product of:
      0.014719742 = sum of:
        0.014719742 = product of:
          0.029439485 = sum of:
            0.029439485 = weight(_text_:management in 3297) [ClassicSimilarity], result of:
              0.029439485 = score(doc=3297,freq=2.0), product of:
                0.15810528 = queryWeight, product of:
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.046906993 = queryNorm
                0.18620178 = fieldWeight in 3297, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3297)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    Ontologies have proven to be an essential element in many applications. They are used in agent systems, knowledge management systems, and e-commerce platforms. They can also generate natural language, integrate intelligent information, provide semantic-based access to the Internet, and extract information from texts in addition to being used in many other applications to explicitly declare the knowledge embedded in them. However, not only are ontologies useful for applications in which knowledge plays a key role, but they can also trigger a major change in current Web contents. This change is leading to the third generation of the Web-known as the Semantic Web-which has been defined as "the conceptual structuring of the Web in an explicit machine-readable way."1 This definition does not differ too much from the one used for defining an ontology: "An ontology is an explicit, machinereadable specification of a shared conceptualization."2 In fact, new ontology-based applications and knowledge architectures are developing for this new Web. A common claim for all of these approaches is the need for languages to represent the semantic information that this Web requires-solving the heterogeneous data exchange in this heterogeneous environment. Here, we don't decide which language is best of the Semantic Web. Rather, our goal is to help developers find the most suitable language for their representation needs. The authors analyze the most representative ontology languages created for the Web and compare them using a common framework.