Search (10 results, page 1 of 1)

  • × theme_ss:"Wissensrepräsentation"
  • × type_ss:"el"
  • × year_i:[2010 TO 2020}
  1. Hollink, L.; Assem, M. van: Estimating the relevance of search results in the Culture-Web : a study of semantic distance measures (2010) 0.02
    0.015851054 = product of:
      0.047553163 = sum of:
        0.047553163 = product of:
          0.07132974 = sum of:
            0.035826012 = weight(_text_:29 in 4649) [ClassicSimilarity], result of:
              0.035826012 = score(doc=4649,freq=2.0), product of:
                0.15363316 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.04367448 = queryNorm
                0.23319192 = fieldWeight in 4649, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4649)
            0.035503734 = weight(_text_:22 in 4649) [ClassicSimilarity], result of:
              0.035503734 = score(doc=4649,freq=2.0), product of:
                0.15294059 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04367448 = queryNorm
                0.23214069 = fieldWeight in 4649, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4649)
          0.6666667 = coord(2/3)
      0.33333334 = coord(1/3)
    
    Date
    29. 7.2011 14:44:56
    26.12.2011 13:40:22
  2. Drewer, P.; Massion, F; Pulitano, D: Was haben Wissensmodellierung, Wissensstrukturierung, künstliche Intelligenz und Terminologie miteinander zu tun? (2017) 0.01
    0.0065747662 = product of:
      0.019724298 = sum of:
        0.019724298 = product of:
          0.05917289 = sum of:
            0.05917289 = weight(_text_:22 in 5576) [ClassicSimilarity], result of:
              0.05917289 = score(doc=5576,freq=2.0), product of:
                0.15294059 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04367448 = queryNorm
                0.38690117 = fieldWeight in 5576, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=5576)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Date
    13.12.2017 14:17:22
  3. Advances in ontologies : Proceedings of the Sixth Australasian Ontology Workshop Adelaide, Australia, 7 December 2010 (2010) 0.01
    0.0055627874 = product of:
      0.016688362 = sum of:
        0.016688362 = product of:
          0.050065085 = sum of:
            0.050065085 = weight(_text_:theory in 4420) [ClassicSimilarity], result of:
              0.050065085 = score(doc=4420,freq=2.0), product of:
                0.18161562 = queryWeight, product of:
                  4.1583924 = idf(docFreq=1878, maxDocs=44218)
                  0.04367448 = queryNorm
                0.27566507 = fieldWeight in 4420, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.1583924 = idf(docFreq=1878, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4420)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Content
    Inhalt YAMATO: Yet Another More Advanced Top-level Ontology (invited talk) - Riichiro Mizoguchi A Visual Analytics Approach to Augmenting Formal Concepts with Relational Background Knowledge in a Biological Domain - Elma Akand, Michael Bain, Mark Temple Combining Ontologies And Natural Language - Wolf Fischer, Bernhard Bauer Comparison of Thesauri and Ontologies from a Semiotic Perspective - Daniel Kless, Simon Milton Fast Classification in Protégé: Snorocket as an OWL2 EL Reasoner - Michael Lawley, Cyril Bousquet Ontological Support for Consistency Checking of Engineering Design Workflows - Franz Maier, Wolfgang Mayer, Markus Stumptner Ontology Inferencing Rules and Operations in Conceptual Structure Theory - Philip H.P. Nguyen, Ken Kaneiwa, Minh-Quang Nguyen An Axiomatisation of Basic Formal Ontology with Projection Functions - Kerry Trentelman, Barry Smith Making Sense of Spreadsheet Data: A Case of Semantic Water Data Translation - Yanfeng Shu, David Ratcliffe, Geoffrey Squire, Michael Compton
  4. Menzel, C.: Knowledge representation, the World Wide Web, and the evolution of logic (2011) 0.01
    0.0055627874 = product of:
      0.016688362 = sum of:
        0.016688362 = product of:
          0.050065085 = sum of:
            0.050065085 = weight(_text_:theory in 761) [ClassicSimilarity], result of:
              0.050065085 = score(doc=761,freq=2.0), product of:
                0.18161562 = queryWeight, product of:
                  4.1583924 = idf(docFreq=1878, maxDocs=44218)
                  0.04367448 = queryNorm
                0.27566507 = fieldWeight in 761, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.1583924 = idf(docFreq=1878, maxDocs=44218)
                  0.046875 = fieldNorm(doc=761)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Abstract
    In this paper, I have traced a series of evolutionary adaptations of FOL motivated entirely by its use by knowledge engineers to represent and share information on the Web culminating in the development of Common Logic. While the primary goal in this paper has been to document this evolution, it is arguable, I think that CL's syntactic and semantic egalitarianism better realizes the goal "topic neutrality" that a logic should ideally exemplify - understood, at least in part, as the idea that logic should as far as possible not itself embody any metaphysical presuppositions. Instead of retaining the traditional metaphysical divisions of FOL that reflect its Fregean origins, CL begins as it were with a single, metaphysically homogeneous domain in which, potentially, anything can play the traditional roles of object, property, relation, and function. Note that the effect of this is not to destroy traditional metaphysical divisions. Rather, it simply to refrain from building those divisions explicitly into one's logic; instead, such divisions are left to the user to introduce and enforce axiomatically in an explicit metaphysical theory.
  5. Mohr, J.W.; Bogdanov, P.: Topic models : what they are and why they matter (2013) 0.01
    0.0055627874 = product of:
      0.016688362 = sum of:
        0.016688362 = product of:
          0.050065085 = sum of:
            0.050065085 = weight(_text_:theory in 1142) [ClassicSimilarity], result of:
              0.050065085 = score(doc=1142,freq=2.0), product of:
                0.18161562 = queryWeight, product of:
                  4.1583924 = idf(docFreq=1878, maxDocs=44218)
                  0.04367448 = queryNorm
                0.27566507 = fieldWeight in 1142, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.1583924 = idf(docFreq=1878, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1142)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Abstract
    We provide a brief, non-technical introduction to the text mining methodology known as "topic modeling." We summarize the theory and background of the method and discuss what kinds of things are found by topic models. Using a text corpus comprised of the eight articles from the special issue of Poetics on the subject of topic models, we run a topic model on these articles, both as a way to introduce the methodology and also to help summarize some of the ways in which social and cultural scientists are using topic models. We review some of the critiques and debates over the use of the method and finally, we link these developments back to some of the original innovations in the field of content analysis that were pioneered by Harold D. Lasswell and colleagues during and just after World War II.
  6. Hoppe, T.: Semantische Filterung : ein Werkzeug zur Steigerung der Effizienz im Wissensmanagement (2013) 0.01
    0.005307558 = product of:
      0.015922673 = sum of:
        0.015922673 = product of:
          0.047768015 = sum of:
            0.047768015 = weight(_text_:29 in 2245) [ClassicSimilarity], result of:
              0.047768015 = score(doc=2245,freq=2.0), product of:
                0.15363316 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.04367448 = queryNorm
                0.31092256 = fieldWeight in 2245, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0625 = fieldNorm(doc=2245)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Date
    29. 9.2015 18:56:44
  7. Onofri, A.: Concepts in context (2013) 0.00
    0.004589066 = product of:
      0.013767197 = sum of:
        0.013767197 = product of:
          0.04130159 = sum of:
            0.04130159 = weight(_text_:theory in 1077) [ClassicSimilarity], result of:
              0.04130159 = score(doc=1077,freq=4.0), product of:
                0.18161562 = queryWeight, product of:
                  4.1583924 = idf(docFreq=1878, maxDocs=44218)
                  0.04367448 = queryNorm
                0.22741209 = fieldWeight in 1077, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.1583924 = idf(docFreq=1878, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=1077)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Abstract
    My thesis discusses two related problems that have taken center stage in the recent literature on concepts: 1) What are the individuation conditions of concepts? Under what conditions is a concept Cv(1) the same concept as a concept Cv(2)? 2) What are the possession conditions of concepts? What conditions must be satisfied for a thinker to have a concept C? The thesis defends a novel account of concepts, which I call "pluralist-contextualist": 1) Pluralism: Different concepts have different kinds of individuation and possession conditions: some concepts are individuated more "coarsely", have less demanding possession conditions and are widely shared, while other concepts are individuated more "finely" and not shared. 2) Contextualism: When a speaker ascribes a propositional attitude to a subject S, or uses his ascription to explain/predict S's behavior, the speaker's intentions in the relevant context determine the correct individuation conditions for the concepts involved in his report. In chapters 1-3 I defend a contextualist, non-Millian theory of propositional attitude ascriptions. Then, I show how contextualism can be used to offer a novel perspective on the problem of concept individuation/possession. More specifically, I employ contextualism to provide a new, more effective argument for Fodor's "publicity principle": if contextualism is true, then certain specific concepts must be shared in order for interpersonally applicable psychological generalizations to be possible. In chapters 4-5 I raise a tension between publicity and another widely endorsed principle, the "Fregean constraint" (FC): subjects who are unaware of certain identity facts and find themselves in so-called "Frege cases" must have distinct concepts for the relevant object x. For instance: the ancient astronomers had distinct concepts (HESPERUS/PHOSPHORUS) for the same object (the planet Venus). First, I examine some leading theories of concepts and argue that they cannot meet both of our constraints at the same time. Then, I offer principled reasons to think that no theory can satisfy (FC) while also respecting publicity. (FC) appears to require a form of holism, on which a concept is individuated by its global inferential role in a subject S and can thus only be shared by someone who has exactly the same inferential dispositions as S. This explains the tension between publicity and (FC), since holism is clearly incompatible with concept shareability. To solve the tension, I suggest adopting my pluralist-contextualist proposal: concepts involved in Frege cases are holistically individuated and not public, while other concepts are more coarsely individuated and widely shared; given this "plurality" of concepts, we will then need contextual factors (speakers' intentions) to "select" the specific concepts to be employed in our intentional generalizations in the relevant contexts. In chapter 6 I develop the view further by contrasting it with some rival accounts. First, I examine a very different kind of pluralism about concepts, which has been recently defended by Daniel Weiskopf, and argue that it is insufficiently radical. Then, I consider the inferentialist accounts defended by authors like Peacocke, Rey and Jackson. Such views, I argue, are committed to an implausible picture of reference determination, on which our inferential dispositions fix the reference of our concepts: this leads to wrong predictions in all those cases of scientific disagreement where two parties have very different inferential dispositions and yet seem to refer to the same natural kind.
  8. Assem, M. van; Rijgersberg, H.; Wigham, M.; Top, J.: Converting and annotating quantitative data tables (2010) 0.00
    0.0033172236 = product of:
      0.009951671 = sum of:
        0.009951671 = product of:
          0.029855011 = sum of:
            0.029855011 = weight(_text_:29 in 4705) [ClassicSimilarity], result of:
              0.029855011 = score(doc=4705,freq=2.0), product of:
                0.15363316 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.04367448 = queryNorm
                0.19432661 = fieldWeight in 4705, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4705)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Date
    29. 7.2011 14:44:56
  9. Monireh, E.; Sarker, M.K.; Bianchi, F.; Hitzler, P.; Doran, D.; Xie, N.: Reasoning over RDF knowledge bases using deep learning (2018) 0.00
    0.0032873831 = product of:
      0.009862149 = sum of:
        0.009862149 = product of:
          0.029586446 = sum of:
            0.029586446 = weight(_text_:22 in 4553) [ClassicSimilarity], result of:
              0.029586446 = score(doc=4553,freq=2.0), product of:
                0.15294059 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04367448 = queryNorm
                0.19345059 = fieldWeight in 4553, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4553)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Date
    16.11.2018 14:22:01
  10. Assem, M. van: Converting and integrating vocabularies for the Semantic Web (2010) 0.00
    0.002653779 = product of:
      0.0079613365 = sum of:
        0.0079613365 = product of:
          0.023884008 = sum of:
            0.023884008 = weight(_text_:29 in 4639) [ClassicSimilarity], result of:
              0.023884008 = score(doc=4639,freq=2.0), product of:
                0.15363316 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.04367448 = queryNorm
                0.15546128 = fieldWeight in 4639, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4639)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Date
    29. 7.2011 14:44:56