Search (19 results, page 1 of 1)

  • × theme_ss:"Wissensrepräsentation"
  • × type_ss:"el"
  1. Priss, U.: Description logic and faceted knowledge representation (1999) 0.03
    0.026457824 = product of:
      0.105831295 = sum of:
        0.105831295 = sum of:
          0.06836079 = weight(_text_:networks in 2655) [ClassicSimilarity], result of:
            0.06836079 = score(doc=2655,freq=2.0), product of:
              0.21802035 = queryWeight, product of:
                4.72992 = idf(docFreq=1060, maxDocs=44218)
                0.046093877 = queryNorm
              0.31355235 = fieldWeight in 2655, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                4.72992 = idf(docFreq=1060, maxDocs=44218)
                0.046875 = fieldNorm(doc=2655)
          0.037470505 = weight(_text_:22 in 2655) [ClassicSimilarity], result of:
            0.037470505 = score(doc=2655,freq=2.0), product of:
              0.16141291 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046093877 = queryNorm
              0.23214069 = fieldWeight in 2655, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=2655)
      0.25 = coord(1/4)
    
    Abstract
    The term "facet" was introduced into the field of library classification systems by Ranganathan in the 1930's [Ranganathan, 1962]. A facet is a viewpoint or aspect. In contrast to traditional classification systems, faceted systems are modular in that a domain is analyzed in terms of baseline facets which are then synthesized. In this paper, the term "facet" is used in a broader meaning. Facets can describe different aspects on the same level of abstraction or the same aspect on different levels of abstraction. The notion of facets is related to database views, multicontexts and conceptual scaling in formal concept analysis [Ganter and Wille, 1999], polymorphism in object-oriented design, aspect-oriented programming, views and contexts in description logic and semantic networks. This paper presents a definition of facets in terms of faceted knowledge representation that incorporates the traditional narrower notion of facets and potentially facilitates translation between different knowledge representation formalisms. A goal of this approach is a modular, machine-aided knowledge base design mechanism. A possible application is faceted thesaurus construction for information retrieval and data mining. Reasoning complexity depends on the size of the modules (facets). A more general analysis of complexity will be left for future research.
    Date
    22. 1.2016 17:30:31
  2. Griffiths, T.L.; Steyvers, M.: ¬A probabilistic approach to semantic representation (2002) 0.02
    0.016112793 = product of:
      0.06445117 = sum of:
        0.06445117 = product of:
          0.12890235 = sum of:
            0.12890235 = weight(_text_:networks in 3671) [ClassicSimilarity], result of:
              0.12890235 = score(doc=3671,freq=4.0), product of:
                0.21802035 = queryWeight, product of:
                  4.72992 = idf(docFreq=1060, maxDocs=44218)
                  0.046093877 = queryNorm
                0.59124 = fieldWeight in 3671, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.72992 = idf(docFreq=1060, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3671)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    Semantic networks produced from human data have statistical properties that cannot be easily captured by spatial representations. We explore a probabilistic approach to semantic representation that explicitly models the probability with which words occurin diffrent contexts, and hence captures the probabilistic relationships between words. We show that this representation has statistical properties consistent with the large-scale structure of semantic networks constructed by humans, and trace the origins of these properties.
  3. Schmitz-Esser, W.; Sigel, A.: Introducing terminology-based ontologies : Papers and Materials presented by the authors at the workshop "Introducing Terminology-based Ontologies" (Poli/Schmitz-Esser/Sigel) at the 9th International Conference of the International Society for Knowledge Organization (ISKO), Vienna, Austria, July 6th, 2006 (2006) 0.01
    0.014242312 = product of:
      0.056969248 = sum of:
        0.056969248 = weight(_text_:communication in 1285) [ClassicSimilarity], result of:
          0.056969248 = score(doc=1285,freq=2.0), product of:
            0.19902779 = queryWeight, product of:
              4.317879 = idf(docFreq=1601, maxDocs=44218)
              0.046093877 = queryNorm
            0.28623766 = fieldWeight in 1285, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.317879 = idf(docFreq=1601, maxDocs=44218)
              0.046875 = fieldNorm(doc=1285)
      0.25 = coord(1/4)
    
    Abstract
    This work-in-progress communication contains the papers and materials presented by Winfried Schmitz-Esser and Alexander Sigel in the joint workshop (with Roberto Poli) "Introducing Terminology-based Ontologies" at the 9th International Conference of the International Society for Knowledge Organization (ISKO), Vienna, Austria, July 6th, 2006.
  4. Guizzardi, G.; Guarino, N.: Semantics, ontology and explanation (2023) 0.01
    0.014242312 = product of:
      0.056969248 = sum of:
        0.056969248 = weight(_text_:communication in 976) [ClassicSimilarity], result of:
          0.056969248 = score(doc=976,freq=2.0), product of:
            0.19902779 = queryWeight, product of:
              4.317879 = idf(docFreq=1601, maxDocs=44218)
              0.046093877 = queryNorm
            0.28623766 = fieldWeight in 976, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.317879 = idf(docFreq=1601, maxDocs=44218)
              0.046875 = fieldNorm(doc=976)
      0.25 = coord(1/4)
    
    Abstract
    The terms 'semantics' and 'ontology' are increasingly appearing together with 'explanation', not only in the scientific literature, but also in organizational communication. However, all of these terms are also being significantly overloaded. In this paper, we discuss their strong relation under particular interpretations. Specifically, we discuss a notion of explanation termed ontological unpacking, which aims at explaining symbolic domain descriptions (conceptual models, knowledge graphs, logical specifications) by revealing their ontological commitment in terms of their assumed truthmakers, i.e., the entities in one's ontology that make the propositions in those descriptions true. To illustrate this idea, we employ an ontological theory of relations to explain (by revealing the hidden semantics of) a very simple symbolic model encoded in the standard modeling language UML. We also discuss the essential role played by ontology-driven conceptual models (resulting from this form of explanation processes) in properly supporting semantic interoperability tasks. Finally, we discuss the relation between ontological unpacking and other forms of explanation in philosophy and science, as well as in the area of Artificial Intelligence.
  5. Veltman, K.H.: Towards a Semantic Web for culture 0.01
    0.009494875 = product of:
      0.0379795 = sum of:
        0.0379795 = weight(_text_:communication in 4040) [ClassicSimilarity], result of:
          0.0379795 = score(doc=4040,freq=2.0), product of:
            0.19902779 = queryWeight, product of:
              4.317879 = idf(docFreq=1601, maxDocs=44218)
              0.046093877 = queryNorm
            0.1908251 = fieldWeight in 4040, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.317879 = idf(docFreq=1601, maxDocs=44218)
              0.03125 = fieldNorm(doc=4040)
      0.25 = coord(1/4)
    
    Abstract
    Today's semantic web deals with meaning in a very restricted sense and offers static solutions. This is adequate for many scientific, technical purposes and for business transactions requiring machine-to-machine communication, but does not answer the needs of culture. Science, technology and business are concerned primarily with the latest findings, the state of the art, i.e. the paradigm or dominant world-view of the day. In this context, history is considered non-essential because it deals with things that are out of date. By contrast, culture faces a much larger challenge, namely, to re-present changes in ways of knowing; changing meanings in different places at a given time (synchronically) and over time (diachronically). Culture is about both objects and the commentaries on them; about a cumulative body of knowledge; about collective memory and heritage. Here, history plays a central role and older does not mean less important or less relevant. Hence, a Leonardo painting that is 400 years old, or a Greek statue that is 2500 years old, typically have richer commentaries and are often more valuable than their contemporary equivalents. In this context, the science of meaning (semantics) is necessarily much more complex than semantic primitives. A semantic web in the cultural domain must enable us to trace how meaning and knowledge organisation have evolved historically in different cultures. This paper examines five issues to address this challenge: 1) different world-views (i.e. a shift from substance to function and from ontology to multiple ontologies); 2) developments in definitions and meaning; 3) distinctions between words and concepts; 4) new classes of relations; and 5) dynamic models of knowledge organisation. These issues reveal that historical dimensions of cultural diversity in knowledge organisation are also central to classification of biological diversity. New ways are proposed of visualizing knowledge using a time/space horizon to distinguish between universals and particulars. It is suggested that new visualization methods make possible a history of questions as well as of answers, thus enabling dynamic access to cultural and historical dimensions of knowledge. Unlike earlier media, which were limited to recording factual dimensions of collective memory, digital media enable us to explore theories, ways of perceiving, ways of knowing; to enter into other mindsets and world-views and thus to attain novel insights and new levels of tolerance. Some practical consequences are outlined.
  6. SKOS Simple Knowledge Organization System Primer (2009) 0.01
    0.008545099 = product of:
      0.034180395 = sum of:
        0.034180395 = product of:
          0.06836079 = sum of:
            0.06836079 = weight(_text_:networks in 4795) [ClassicSimilarity], result of:
              0.06836079 = score(doc=4795,freq=2.0), product of:
                0.21802035 = queryWeight, product of:
                  4.72992 = idf(docFreq=1060, maxDocs=44218)
                  0.046093877 = queryNorm
                0.31355235 = fieldWeight in 4795, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.72992 = idf(docFreq=1060, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4795)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    SKOS (Simple Knowledge Organisation System) provides a model for expressing the basic structure and content of concept schemes such as thesauri, classification schemes, subject heading lists, taxonomies, folksonomies, and other types of controlled vocabulary. As an application of the Resource Description Framework (RDF) SKOS allows concepts to be documented, linked and merged with other data, while still being composed, integrated and published on the World Wide Web. This document is an implementors guide for those who would like to represent their concept scheme using SKOS. In basic SKOS, conceptual resources (concepts) can be identified using URIs, labelled with strings in one or more natural languages, documented with various types of notes, semantically related to each other in informal hierarchies and association networks, and aggregated into distinct concept schemes. In advanced SKOS, conceptual resources can be mapped to conceptual resources in other schemes and grouped into labelled or ordered collections. Concept labels can also be related to each other. Finally, the SKOS vocabulary itself can be extended to suit the needs of particular communities of practice.
  7. Drewer, P.; Massion, F; Pulitano, D: Was haben Wissensmodellierung, Wissensstrukturierung, künstliche Intelligenz und Terminologie miteinander zu tun? (2017) 0.01
    0.0078063556 = product of:
      0.031225422 = sum of:
        0.031225422 = product of:
          0.062450845 = sum of:
            0.062450845 = weight(_text_:22 in 5576) [ClassicSimilarity], result of:
              0.062450845 = score(doc=5576,freq=2.0), product of:
                0.16141291 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046093877 = queryNorm
                0.38690117 = fieldWeight in 5576, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=5576)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    13.12.2017 14:17:22
  8. Tudhope, D.; Hodge, G.: Terminology registries (2007) 0.01
    0.0078063556 = product of:
      0.031225422 = sum of:
        0.031225422 = product of:
          0.062450845 = sum of:
            0.062450845 = weight(_text_:22 in 539) [ClassicSimilarity], result of:
              0.062450845 = score(doc=539,freq=2.0), product of:
                0.16141291 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046093877 = queryNorm
                0.38690117 = fieldWeight in 539, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=539)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    26.12.2011 13:22:07
  9. Pepper, S.; Groenmo, G.O.: Towards a general theory of scope (2002) 0.01
    0.0071209157 = product of:
      0.028483663 = sum of:
        0.028483663 = product of:
          0.056967326 = sum of:
            0.056967326 = weight(_text_:networks in 539) [ClassicSimilarity], result of:
              0.056967326 = score(doc=539,freq=2.0), product of:
                0.21802035 = queryWeight, product of:
                  4.72992 = idf(docFreq=1060, maxDocs=44218)
                  0.046093877 = queryNorm
                0.26129362 = fieldWeight in 539, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.72992 = idf(docFreq=1060, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=539)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    This paper is concerned with the issue of scope in topic maps. Topic maps are a form of knowledge representation suitable for solving a number of complex problems in the area of information management, ranging from findability (navigation and querying) to knowledge management and enterprise application integration (EAI). The topic map paradigm has its roots in efforts to understand the essential semantics of back-of-book indexes in order that they might be captured in a form suitable for computer processing. Once understood, the model of a back-of-book index was generalised in order to cover the needs of digital information, and extended to encompass glossaries and thesauri, as well as indexes. The resulting core model, of typed topics, associations, and occurrences, has many similarities with the semantic networks developed by the artificial intelligence community for representing knowledge structures. One key requirement of topic maps from the earliest days was to be able to merge indexes from disparate origins. This requirement accounts for two further concepts that greatly enhance the power of topic maps: subject identity and scope. This paper concentrates on scope, but also includes a brief discussion of the feature known as the topic naming constraint, with which it is closely related. It is based on the authors' experience in creating topic maps (in particular, the Italian Opera Topic Map, and in implementing processing systems for topic maps (in particular, the Ontopia Topic Map Engine and Navigator.
  10. OWL Web Ontology Language Test Cases (2004) 0.01
    0.006245084 = product of:
      0.024980336 = sum of:
        0.024980336 = product of:
          0.049960673 = sum of:
            0.049960673 = weight(_text_:22 in 4685) [ClassicSimilarity], result of:
              0.049960673 = score(doc=4685,freq=2.0), product of:
                0.16141291 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046093877 = queryNorm
                0.30952093 = fieldWeight in 4685, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4685)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    14. 8.2011 13:33:22
  11. Hauff-Hartig, S.: Wissensrepräsentation durch RDF: Drei angewandte Forschungsbeispiele : Bitte recht vielfältig: Wie Wissensgraphen, Disco und FaBiO Struktur in Mangas und die Humanities bringen (2021) 0.01
    0.006245084 = product of:
      0.024980336 = sum of:
        0.024980336 = product of:
          0.049960673 = sum of:
            0.049960673 = weight(_text_:22 in 318) [ClassicSimilarity], result of:
              0.049960673 = score(doc=318,freq=2.0), product of:
                0.16141291 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046093877 = queryNorm
                0.30952093 = fieldWeight in 318, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=318)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    22. 5.2021 12:43:05
  12. Knorz, G.; Rein, B.: Semantische Suche in einer Hochschulontologie : Ontologie-basiertes Information-Filtering und -Retrieval mit relationalen Datenbanken (2005) 0.01
    0.0054644486 = product of:
      0.021857794 = sum of:
        0.021857794 = product of:
          0.04371559 = sum of:
            0.04371559 = weight(_text_:22 in 4324) [ClassicSimilarity], result of:
              0.04371559 = score(doc=4324,freq=2.0), product of:
                0.16141291 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046093877 = queryNorm
                0.2708308 = fieldWeight in 4324, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4324)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    11. 2.2011 18:22:25
  13. Mayfield, J.; Finin, T.: Information retrieval on the Semantic Web : integrating inference and retrieval 0.01
    0.0054644486 = product of:
      0.021857794 = sum of:
        0.021857794 = product of:
          0.04371559 = sum of:
            0.04371559 = weight(_text_:22 in 4330) [ClassicSimilarity], result of:
              0.04371559 = score(doc=4330,freq=2.0), product of:
                0.16141291 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046093877 = queryNorm
                0.2708308 = fieldWeight in 4330, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4330)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    12. 2.2011 17:35:22
  14. Priss, U.: Faceted knowledge representation (1999) 0.01
    0.0054644486 = product of:
      0.021857794 = sum of:
        0.021857794 = product of:
          0.04371559 = sum of:
            0.04371559 = weight(_text_:22 in 2654) [ClassicSimilarity], result of:
              0.04371559 = score(doc=2654,freq=2.0), product of:
                0.16141291 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046093877 = queryNorm
                0.2708308 = fieldWeight in 2654, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2654)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    22. 1.2016 17:30:31
  15. Definition of the CIDOC Conceptual Reference Model (2003) 0.00
    0.004683813 = product of:
      0.018735252 = sum of:
        0.018735252 = product of:
          0.037470505 = sum of:
            0.037470505 = weight(_text_:22 in 1652) [ClassicSimilarity], result of:
              0.037470505 = score(doc=1652,freq=2.0), product of:
                0.16141291 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046093877 = queryNorm
                0.23214069 = fieldWeight in 1652, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1652)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    6. 8.2010 14:22:28
  16. Hollink, L.; Assem, M. van: Estimating the relevance of search results in the Culture-Web : a study of semantic distance measures (2010) 0.00
    0.004683813 = product of:
      0.018735252 = sum of:
        0.018735252 = product of:
          0.037470505 = sum of:
            0.037470505 = weight(_text_:22 in 4649) [ClassicSimilarity], result of:
              0.037470505 = score(doc=4649,freq=2.0), product of:
                0.16141291 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046093877 = queryNorm
                0.23214069 = fieldWeight in 4649, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4649)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    26.12.2011 13:40:22
  17. Bittner, T.; Donnelly, M.; Winter, S.: Ontology and semantic interoperability (2006) 0.00
    0.004683813 = product of:
      0.018735252 = sum of:
        0.018735252 = product of:
          0.037470505 = sum of:
            0.037470505 = weight(_text_:22 in 4820) [ClassicSimilarity], result of:
              0.037470505 = score(doc=4820,freq=2.0), product of:
                0.16141291 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046093877 = queryNorm
                0.23214069 = fieldWeight in 4820, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4820)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    3.12.2016 18:39:22
  18. Beppler, F.D.; Fonseca, F.T.; Pacheco, R.C.S.: Hermeneus: an architecture for an ontology-enabled information retrieval (2008) 0.00
    0.004683813 = product of:
      0.018735252 = sum of:
        0.018735252 = product of:
          0.037470505 = sum of:
            0.037470505 = weight(_text_:22 in 3261) [ClassicSimilarity], result of:
              0.037470505 = score(doc=3261,freq=2.0), product of:
                0.16141291 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046093877 = queryNorm
                0.23214069 = fieldWeight in 3261, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3261)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    28.11.2016 12:43:22
  19. Monireh, E.; Sarker, M.K.; Bianchi, F.; Hitzler, P.; Doran, D.; Xie, N.: Reasoning over RDF knowledge bases using deep learning (2018) 0.00
    0.0039031778 = product of:
      0.015612711 = sum of:
        0.015612711 = product of:
          0.031225422 = sum of:
            0.031225422 = weight(_text_:22 in 4553) [ClassicSimilarity], result of:
              0.031225422 = score(doc=4553,freq=2.0), product of:
                0.16141291 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046093877 = queryNorm
                0.19345059 = fieldWeight in 4553, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4553)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    16.11.2018 14:22:01