Search (5 results, page 1 of 1)

  • × theme_ss:"Wissensrepräsentation"
  • × type_ss:"x"
  • × year_i:[2010 TO 2020}
  1. Xiong, C.: Knowledge based text representations for information retrieval (2016) 0.05
    0.05338057 = product of:
      0.08007085 = sum of:
        0.053231142 = product of:
          0.15969342 = sum of:
            0.15969342 = weight(_text_:3a in 5820) [ClassicSimilarity], result of:
              0.15969342 = score(doc=5820,freq=2.0), product of:
                0.4262143 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.05027291 = queryNorm
                0.3746787 = fieldWeight in 5820, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.03125 = fieldNorm(doc=5820)
          0.33333334 = coord(1/3)
        0.026839713 = weight(_text_:search in 5820) [ClassicSimilarity], result of:
          0.026839713 = score(doc=5820,freq=2.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.15360467 = fieldWeight in 5820, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.03125 = fieldNorm(doc=5820)
      0.6666667 = coord(2/3)
    
    Abstract
    The successes of information retrieval (IR) in recent decades were built upon bag-of-words representations. Effective as it is, bag-of-words is only a shallow text understanding; there is a limited amount of information for document ranking in the word space. This dissertation goes beyond words and builds knowledge based text representations, which embed the external and carefully curated information from knowledge bases, and provide richer and structured evidence for more advanced information retrieval systems. This thesis research first builds query representations with entities associated with the query. Entities' descriptions are used by query expansion techniques that enrich the query with explanation terms. Then we present a general framework that represents a query with entities that appear in the query, are retrieved by the query, or frequently show up in the top retrieved documents. A latent space model is developed to jointly learn the connections from query to entities and the ranking of documents, modeling the external evidence from knowledge bases and internal ranking features cooperatively. To further improve the quality of relevant entities, a defining factor of our query representations, we introduce learning to rank to entity search and retrieve better entities from knowledge bases. In the document representation part, this thesis research also moves one step forward with a bag-of-entities model, in which documents are represented by their automatic entity annotations, and the ranking is performed in the entity space.
    Content
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Language and Information Technologies. Vgl.: https%3A%2F%2Fwww.cs.cmu.edu%2F~cx%2Fpapers%2Fknowledge_based_text_representation.pdf&usg=AOvVaw0SaTSvhWLTh__Uz_HtOtl3.
  2. Kiren, T.: ¬A clustering based indexing technique of modularized ontologies for information retrieval (2017) 0.03
    0.03438644 = product of:
      0.051579658 = sum of:
        0.037957087 = weight(_text_:search in 4399) [ClassicSimilarity], result of:
          0.037957087 = score(doc=4399,freq=4.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.21722981 = fieldWeight in 4399, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.03125 = fieldNorm(doc=4399)
        0.013622572 = product of:
          0.027245143 = sum of:
            0.027245143 = weight(_text_:22 in 4399) [ClassicSimilarity], result of:
              0.027245143 = score(doc=4399,freq=2.0), product of:
                0.17604718 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05027291 = queryNorm
                0.15476047 = fieldWeight in 4399, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4399)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Modular ontologies are built in modular manner by combining modules from multiple relevant ontologies. Ontology heterogeneity also arises during modular ontology construction because multiple ontologies are being dealt with, during this process. Ontologies need to be aligned before using them for modular ontology construction. The existing approaches for ontology alignment compare all the concepts of each ontology to be aligned, hence not optimized in terms of time and search space utilization. A new indexing technique is proposed based on modular ontology. An efficient ontology alignment technique is proposed to solve the heterogeneity problem during the construction of modular ontology. Results are satisfactory as Precision and Recall are improved by (8%) and (10%) respectively. The value of Pearsons Correlation Coefficient for degree of similarity, time, search space requirement, precision and recall are close to 1 which shows that the results are significant. Further research can be carried out for using modular ontology based indexing technique for Multimedia Information Retrieval and Bio-Medical information retrieval.
    Date
    20. 1.2015 18:30:22
  3. Kara, S.: ¬An ontology-based retrieval system using semantic indexing (2012) 0.01
    0.013419857 = product of:
      0.04025957 = sum of:
        0.04025957 = weight(_text_:search in 3829) [ClassicSimilarity], result of:
          0.04025957 = score(doc=3829,freq=2.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.230407 = fieldWeight in 3829, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.046875 = fieldNorm(doc=3829)
      0.33333334 = coord(1/3)
    
    Abstract
    In this thesis, we present an ontology-based information extraction and retrieval system and its application to soccer domain. In general, we deal with three issues in semantic search, namely, usability, scalability and retrieval performance. We propose a keyword-based semantic retrieval approach. The performance of the system is improved considerably using domain-specific information extraction, inference and rules. Scalability is achieved by adapting a semantic indexing approach. The system is implemented using the state-of-the-art technologies in SemanticWeb and its performance is evaluated against traditional systems as well as the query expansion methods. Furthermore, a detailed evaluation is provided to observe the performance gain due to domain-specific information extraction and inference. Finally, we show how we use semantic indexing to solve simple structural ambiguities.
  4. Hannech, A.: Système de recherche d'information étendue basé sur une projection multi-espaces (2018) 0.01
    0.013419857 = product of:
      0.04025957 = sum of:
        0.04025957 = weight(_text_:search in 4472) [ClassicSimilarity], result of:
          0.04025957 = score(doc=4472,freq=18.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.230407 = fieldWeight in 4472, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.015625 = fieldNorm(doc=4472)
      0.33333334 = coord(1/3)
    
    Abstract
    Since its appearance in the early 90's, the World Wide Web (WWW or Web) has provided universal access to knowledge and the world of information has been primarily witness to a great revolution (the digital revolution). It quickly became very popular, making it the largest and most comprehensive database and knowledge base thanks to the amount and diversity of data it contains. However, the considerable increase and evolution of these data raises important problems for users, in particular for accessing the documents most relevant to their search queries. In order to cope with this exponential explosion of data volume and facilitate their access by users, various models are offered by information retrieval systems (IRS) for the representation and retrieval of web documents. Traditional SRIs use simple keywords that are not semantically linked to index and retrieve these documents. This creates limitations in terms of the relevance and ease of exploration of results. To overcome these limitations, existing techniques enrich documents by integrating external keywords from different sources. However, these systems still suffer from limitations that are related to the exploitation techniques of these sources of enrichment. When the different sources are used so that they cannot be distinguished by the system, this limits the flexibility of the exploration models that can be applied to the results returned by this system. Users then feel lost to these results, and find themselves forced to filter them manually to select the relevant information. If they want to go further, they must reformulate and target their search queries even more until they reach the documents that best meet their expectations. In this way, even if the systems manage to find more relevant results, their presentation remains problematic. In order to target research to more user-specific information needs and improve the relevance and exploration of its research findings, advanced SRIs adopt different data personalization techniques that assume that current research of user is directly related to his profile and / or previous browsing / search experiences.
    However, this assumption does not hold in all cases, the needs of the user evolve over time and can move away from his previous interests stored in his profile. In other cases, the user's profile may be misused to extract or infer new information needs. This problem is much more accentuated with ambiguous queries. When multiple POIs linked to a search query are identified in the user's profile, the system is unable to select the relevant data from that profile to respond to that request. This has a direct impact on the quality of the results provided to this user. In order to overcome some of these limitations, in this research thesis, we have been interested in the development of techniques aimed mainly at improving the relevance of the results of current SRIs and facilitating the exploration of major collections of documents. To do this, we propose a solution based on a new concept and model of indexing and information retrieval called multi-spaces projection. This proposal is based on the exploitation of different categories of semantic and social information that enrich the universe of document representation and search queries in several dimensions of interpretations. The originality of this representation is to be able to distinguish between the different interpretations used for the description and the search for documents. This gives a better visibility on the results returned and helps to provide a greater flexibility of search and exploration, giving the user the ability to navigate one or more views of data that interest him the most. In addition, the proposed multidimensional representation universes for document description and search query interpretation help to improve the relevance of the user's results by providing a diversity of research / exploration that helps meet his diverse needs and those of other different users. This study exploits different aspects that are related to the personalized search and aims to solve the problems caused by the evolution of the information needs of the user. Thus, when the profile of this user is used by our system, a technique is proposed and used to identify the interests most representative of his current needs in his profile. This technique is based on the combination of three influential factors, including the contextual, frequency and temporal factor of the data. The ability of users to interact, exchange ideas and opinions, and form social networks on the Web, has led systems to focus on the types of interactions these users have at the level of interaction between them as well as their social roles in the system. This social information is discussed and integrated into this research work. The impact and how they are integrated into the IR process are studied to improve the relevance of the results.
  5. Ziemba, L.: Information retrieval with concept discovery in digital collections for agriculture and natural resources (2011) 0.01
    0.0089465715 = product of:
      0.026839713 = sum of:
        0.026839713 = weight(_text_:search in 4728) [ClassicSimilarity], result of:
          0.026839713 = score(doc=4728,freq=2.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.15360467 = fieldWeight in 4728, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.03125 = fieldNorm(doc=4728)
      0.33333334 = coord(1/3)
    
    Abstract
    The amount and complexity of information available in a digital form is already huge and new information is being produced every day. Retrieving information relevant to address a particular need becomes a significant issue. This work utilizes knowledge organization systems (KOS), such as thesauri and ontologies and applies information extraction (IE) and computational linguistics (CL) techniques to organize, manage and retrieve information stored in digital collections in the agricultural domain. Two real world applications of the approach have been developed and are available and actively used by the public. An ontology is used to manage the Water Conservation Digital Library holding a dynamic collection of various types of digital resources in the domain of urban water conservation in Florida, USA. The ontology based back-end powers a fully operational web interface, available at http://library.conservefloridawater.org. The system has demonstrated numerous benefits of the ontology application, including accurate retrieval of resources, information sharing and reuse, and has proved to effectively facilitate information management. The major difficulty encountered with the approach is that large and dynamic number of concepts makes it difficult to keep the ontology consistent and to accurately catalog resources manually. To address the aforementioned issues, a combination of IE and CL techniques, such as Vector Space Model and probabilistic parsing, with the use of Agricultural Thesaurus were adapted to automatically extract concepts important for each of the texts in the Best Management Practices (BMP) Publication Library--a collection of documents in the domain of agricultural BMPs in Florida available at http://lyra.ifas.ufl.edu/LIB. A new approach of domain-specific concept discovery with the use of Internet search engine was developed. Initial evaluation of the results indicates significant improvement in precision of information extraction. The approach presented in this work focuses on problems unique to agriculture and natural resources domain, such as domain specific concepts and vocabularies, but should be applicable to any collection of texts in digital format. It may be of potential interest for anyone who needs to effectively manage a collection of digital resources.