Search (192 results, page 10 of 10)

  • × theme_ss:"Wissensrepräsentation"
  • × year_i:[2010 TO 2020}
  1. Guns, R.: Tracing the origins of the semantic web (2013) 0.00
    1.6444239E-4 = product of:
      0.0024666358 = sum of:
        0.0024666358 = product of:
          0.0049332716 = sum of:
            0.0049332716 = weight(_text_:information in 1093) [ClassicSimilarity], result of:
              0.0049332716 = score(doc=1093,freq=2.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.09697737 = fieldWeight in 1093, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1093)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Source
    Journal of the American Society for Information Science and Technology. 64(2013) no.10, S.2173-2181
  2. Giunchiglia, F.; Dutta, B.; Maltese, V.: From knowledge organization to knowledge representation (2014) 0.00
    1.6444239E-4 = product of:
      0.0024666358 = sum of:
        0.0024666358 = product of:
          0.0049332716 = sum of:
            0.0049332716 = weight(_text_:information in 1369) [ClassicSimilarity], result of:
              0.0049332716 = score(doc=1369,freq=2.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.09697737 = fieldWeight in 1369, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1369)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    So far, within the library and information science (LIS) community, knowledge organization (KO) has developed its own very successful solutions to document search, allowing for the classification, indexing and search of millions of books. However, current KO solutions are limited in expressivity as they only support queries by document properties, e.g., by title, author and subject. In parallel, within the artificial intelligence and semantic web communities, knowledge representation (KR) has developed very powerful end expressive techniques, which via the use of ontologies support queries by any entity property (e.g., the properties of the entities described in a document). However, KR has not scaled yet to the level of KO, mainly because of the lack of a precise and scalable entity specification methodology. In this paper we present DERA, a new methodology inspired by the faceted approach, as introduced in KO, that retains all the advantages of KR and compensates for the limitations of KO. DERA guarantees at the same time quality, extensibility, scalability and effectiveness in search.
  3. Frické, M.: Logical division (2016) 0.00
    1.6444239E-4 = product of:
      0.0024666358 = sum of:
        0.0024666358 = product of:
          0.0049332716 = sum of:
            0.0049332716 = weight(_text_:information in 3183) [ClassicSimilarity], result of:
              0.0049332716 = score(doc=3183,freq=2.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.09697737 = fieldWeight in 3183, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3183)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    Division is obviously important to Knowledge Organization. Typically, an organizational infrastructure might acknowledge three types of connecting relationships: class hierarchies, where some classes are subclasses of others, partitive hierarchies, where some items are parts of others, and instantiation, where some items are members of some classes (see Z39.19 ANSI/NISO 2005 as an example). The first two of these involve division (the third, instantiation, does not involve division). Logical division would usually be a part of hierarchical classification systems, which, in turn, are central to shelving in libraries, to subject classification schemes, to controlled vocabularies, and to thesauri. Partitive hierarchies, and partitive division, are often essential to controlled vocabularies, thesauri, and subject tagging systems. Partitive hierarchies also relate to the bearers of information; for example, a journal would typically have its component articles as parts and, in turn, they might have sections as their parts, and, of course, components might be arrived at by partitive division (see Tillett 2009 as an illustration). Finally, verbal division, disambiguating homographs, is basic to controlled vocabularies. Thus Division is a broad and relevant topic. This article, though, is going to focus on Logical Division.
  4. Cao, N.; Sun, J.; Lin, Y.-R.; Gotz, D.; Liu, S.; Qu, H.: FacetAtlas : Multifaceted visualization for rich text corpora (2010) 0.00
    1.6444239E-4 = product of:
      0.0024666358 = sum of:
        0.0024666358 = product of:
          0.0049332716 = sum of:
            0.0049332716 = weight(_text_:information in 3366) [ClassicSimilarity], result of:
              0.0049332716 = score(doc=3366,freq=2.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.09697737 = fieldWeight in 3366, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3366)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    Documents in rich text corpora usually contain multiple facets of information. For example, an article about a specific disease often consists of different facets such as symptom, treatment, cause, diagnosis, prognosis, and prevention. Thus, documents may have different relations based on different facets. Powerful search tools have been developed to help users locate lists of individual documents that are most related to specific keywords. However, there is a lack of effective analysis tools that reveal the multifaceted relations of documents within or cross the document clusters. In this paper, we present FacetAtlas, a multifaceted visualization technique for visually analyzing rich text corpora. FacetAtlas combines search technology with advanced visual analytical tools to convey both global and local patterns simultaneously. We describe several unique aspects of FacetAtlas, including (1) node cliques and multifaceted edges, (2) an optimized density map, and (3) automated opacity pattern enhancement for highlighting visual patterns, (4) interactive context switch between facets. In addition, we demonstrate the power of FacetAtlas through a case study that targets patient education in the health care domain. Our evaluation shows the benefits of this work, especially in support of complex multifaceted data analysis.
  5. Mainzer, K.: ¬The emergence of self-conscious systems : from symbolic AI to embodied robotics (2014) 0.00
    1.6444239E-4 = product of:
      0.0024666358 = sum of:
        0.0024666358 = product of:
          0.0049332716 = sum of:
            0.0049332716 = weight(_text_:information in 3398) [ClassicSimilarity], result of:
              0.0049332716 = score(doc=3398,freq=2.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.09697737 = fieldWeight in 3398, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3398)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Source
    Philosophy, computing and information science. Eds.: R. Hagengruber u. U.V. Riss
  6. Jansen, L.: Four rules for classifying social entities (2014) 0.00
    1.6444239E-4 = product of:
      0.0024666358 = sum of:
        0.0024666358 = product of:
          0.0049332716 = sum of:
            0.0049332716 = weight(_text_:information in 3409) [ClassicSimilarity], result of:
              0.0049332716 = score(doc=3409,freq=2.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.09697737 = fieldWeight in 3409, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3409)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Source
    Philosophy, computing and information science. Eds.: R. Hagengruber u. U.V. Riss
  7. Wen, B.; Horlings, E.; Zouwen, M. van der; Besselaar, P. van den: Mapping science through bibliometric triangulation : an experimental approach applied to water research (2017) 0.00
    1.6444239E-4 = product of:
      0.0024666358 = sum of:
        0.0024666358 = product of:
          0.0049332716 = sum of:
            0.0049332716 = weight(_text_:information in 3437) [ClassicSimilarity], result of:
              0.0049332716 = score(doc=3437,freq=2.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.09697737 = fieldWeight in 3437, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3437)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Source
    Journal of the Association for Information Science and Technology. 68(2017) no.3, S.724-738
  8. Zhitomirsky-Geffet, M.; Erez, E.S.; Bar-Ilan, J.: Toward multiviewpoint ontology construction by collaboration of non-experts and crowdsourcing : the case of the effect of diet on health (2017) 0.00
    1.6444239E-4 = product of:
      0.0024666358 = sum of:
        0.0024666358 = product of:
          0.0049332716 = sum of:
            0.0049332716 = weight(_text_:information in 3439) [ClassicSimilarity], result of:
              0.0049332716 = score(doc=3439,freq=2.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.09697737 = fieldWeight in 3439, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3439)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Source
    Journal of the Association for Information Science and Technology. 68(2017) no.3, S.681-694
  9. Wenige, L.; Ruhland, J.: Similarity-based knowledge graph queries for recommendation retrieval (2019) 0.00
    1.6444239E-4 = product of:
      0.0024666358 = sum of:
        0.0024666358 = product of:
          0.0049332716 = sum of:
            0.0049332716 = weight(_text_:information in 5864) [ClassicSimilarity], result of:
              0.0049332716 = score(doc=5864,freq=2.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.09697737 = fieldWeight in 5864, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5864)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    Current retrieval and recommendation approaches rely on hard-wired data models. This hinders personalized cus-tomizations to meet information needs of users in a more flexible manner. Therefore, the paper investigates how similarity-basedretrieval strategies can be combined with graph queries to enable users or system providers to explore repositories in the LinkedOpen Data (LOD) cloud more thoroughly. For this purpose, we developed novel content-based recommendation approaches.They rely on concept annotations of Simple Knowledge Organization System (SKOS) vocabularies and a SPARQL-based querylanguage that facilitates advanced and personalized requests for openly available knowledge graphs. We have comprehensivelyevaluated the novel search strategies in several test cases and example application domains (i.e., travel search and multimediaretrieval). The results of the web-based online experiments showed that our approaches increase the recall and diversity of rec-ommendations or at least provide a competitive alternative strategy of resource access when conventional methods do not providehelpful suggestions. The findings may be of use for Linked Data-enabled recommender systems (LDRS) as well as for semanticsearch engines that can consume LOD resources. (PDF) Similarity-based knowledge graph queries for recommendation retrieval. Available from: https://www.researchgate.net/publication/333358714_Similarity-based_knowledge_graph_queries_for_recommendation_retrieval [accessed May 21 2020].
  10. ¬The Semantic Web - ISWC 2010 : 9th International Semantic Web Conference, ISWC 2010, Shanghai, China, November 7-11, 2010, Revised Selected Papers, Part I. (2010) 0.00
    1.3155391E-4 = product of:
      0.0019733086 = sum of:
        0.0019733086 = product of:
          0.0039466172 = sum of:
            0.0039466172 = weight(_text_:information in 4707) [ClassicSimilarity], result of:
              0.0039466172 = score(doc=4707,freq=2.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.0775819 = fieldWeight in 4707, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4707)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    The two-volume set LNCS 6496 and 6497 constitutes the refereed proceedings of the 9th International Semantic Web Conference, ISWC 2010, held in Shanghai, China, during November 7-11, 2010. Part I contains 51 papers out of 578 submissions to the research track. Part II contains 18 papers out of 66 submissions to the semantic Web in-use track, 6 papers out of 26 submissions to the doctoral consortium track, and also 4 invited talks. Each submitted paper were carefully reviewed. The International Semantic Web Conferences (ISWC) constitute the major international venue where the latest research results and technical innovations on all aspects of the Semantic Web are presented. ISWC brings together researchers, practitioners, and users from the areas of artificial intelligence, databases, social networks, distributed computing, Web engineering, information systems, natural language processing, soft computing, and human computer interaction to discuss the major challenges and proposed solutions, the success stories and failures, as well the visions that can advance research and drive innovation in the Semantic Web.
  11. Baker, T.; Bermès, E.; Coyle, K.; Dunsire, G.; Isaac, A.; Murray, P.; Panzer, M.; Schneider, J.; Singer, R.; Summers, E.; Waites, W.; Young, J.; Zeng, M.: Library Linked Data Incubator Group Final Report (2011) 0.00
    1.3155391E-4 = product of:
      0.0019733086 = sum of:
        0.0019733086 = product of:
          0.0039466172 = sum of:
            0.0039466172 = weight(_text_:information in 4796) [ClassicSimilarity], result of:
              0.0039466172 = score(doc=4796,freq=2.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.0775819 = fieldWeight in 4796, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4796)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    The mission of the W3C Library Linked Data Incubator Group, chartered from May 2010 through August 2011, has been "to help increase global interoperability of library data on the Web, by bringing together people involved in Semantic Web activities - focusing on Linked Data - in the library community and beyond, building on existing initiatives, and identifying collaboration tracks for the future." In Linked Data [LINKEDDATA], data is expressed using standards such as Resource Description Framework (RDF) [RDF], which specifies relationships between things, and Uniform Resource Identifiers (URIs, or "Web addresses") [URI]. This final report of the Incubator Group examines how Semantic Web standards and Linked Data principles can be used to make the valuable information assets that library create and curate - resources such as bibliographic data, authorities, and concept schemes - more visible and re-usable outside of their original library context on the wider Web. The Incubator Group began by eliciting reports on relevant activities from parties ranging from small, independent projects to national library initiatives (see the separate report, Library Linked Data Incubator Group: Use Cases) [USECASE]. These use cases provided the starting point for the work summarized in the report: an analysis of the benefits of library Linked Data, a discussion of current issues with regard to traditional library data, existing library Linked Data initiatives, and legal rights over library data; and recommendations for next steps. The report also summarizes the results of a survey of current Linked Data technologies and an inventory of library Linked Data resources available today (see also the more detailed report, Library Linked Data Incubator Group: Datasets, Value Vocabularies, and Metadata Element Sets) [VOCABDATASET].
  12. Chen, H.; Baptista Nunes, J.M.; Ragsdell, G.; An, X.: Somatic and cultural knowledge : drivers of a habitus-driven model of tacit knowledge acquisition (2019) 0.00
    1.1510967E-4 = product of:
      0.001726645 = sum of:
        0.001726645 = product of:
          0.00345329 = sum of:
            0.00345329 = weight(_text_:information in 5460) [ClassicSimilarity], result of:
              0.00345329 = score(doc=5460,freq=2.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.06788416 = fieldWeight in 5460, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=5460)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    Findings The findings of this research suggest that individual learning and development are deemed to be the fundamental feature for professional success and survival in the continuously changing environment of the SW industry today. However, individual learning was described by the participants as much more than a mere individual process. It involves a collective and participatory effort within the organization and the sector as a whole, and a KS process that transcends organizational, cultural and national borders. Individuals in particular are mostly motivated by the pressing need to face and adapt to the dynamic and changeable environments of today's digital society that is led by the sector. Software practitioners are continuously in need of learning, refreshing and accumulating tacit knowledge, partly because it is required by their companies, but also due to a sound awareness of continuous technical and technological changes that seem only to increase with the advances of information technology. This led to a clear theoretical understanding that the continuous change that faces the sector has led to individual acquisition of culture and somatic knowledge that in turn lay the foundation for not only the awareness of the need for continuous individual professional development but also for the creation of habitus related to KS and continuous learning. Originality/value The study reported in this paper shows that there is a theoretical link between the existence of conducive organizational and sector-wide somatic and cultural knowledge, and the success of KS practices that lead to individual learning and development. Therefore, the theory proposed suggests that somatic and cultural knowledge are crucial drivers for the creation of habitus of individual tacit knowledge acquisition. The paper further proposes a habitus-driven individual development (HDID) Theoretical Model that can be of use to both academics and practitioners interested in fostering and developing processes of KS and individual development in knowledge-intensive organizations.

Authors

Languages

  • e 152
  • d 37
  • f 1
  • pt 1
  • More… Less…

Types

  • a 150
  • el 32
  • m 16
  • x 15
  • s 7
  • n 1
  • p 1
  • r 1
  • More… Less…

Subjects