Search (72 results, page 1 of 4)

  • × theme_ss:"Wissensrepräsentation"
  • × year_i:[2010 TO 2020}
  1. Zeng, Q.; Yu, M.; Yu, W.; Xiong, J.; Shi, Y.; Jiang, M.: Faceted hierarchy : a new graph type to organize scientific concepts and a construction method (2019) 0.15
    0.14900148 = product of:
      0.29800296 = sum of:
        0.07450074 = product of:
          0.22350222 = sum of:
            0.22350222 = weight(_text_:3a in 400) [ClassicSimilarity], result of:
              0.22350222 = score(doc=400,freq=2.0), product of:
                0.39767802 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.046906993 = queryNorm
                0.56201804 = fieldWeight in 400, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.046875 = fieldNorm(doc=400)
          0.33333334 = coord(1/3)
        0.22350222 = weight(_text_:2f in 400) [ClassicSimilarity], result of:
          0.22350222 = score(doc=400,freq=2.0), product of:
            0.39767802 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.046906993 = queryNorm
            0.56201804 = fieldWeight in 400, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.046875 = fieldNorm(doc=400)
      0.5 = coord(2/4)
    
    Content
    Vgl.: https%3A%2F%2Faclanthology.org%2FD19-5317.pdf&usg=AOvVaw0ZZFyq5wWTtNTvNkrvjlGA.
  2. Xiong, C.: Knowledge based text representations for information retrieval (2016) 0.13
    0.13019353 = product of:
      0.26038706 = sum of:
        0.04966716 = product of:
          0.14900148 = sum of:
            0.14900148 = weight(_text_:3a in 5820) [ClassicSimilarity], result of:
              0.14900148 = score(doc=5820,freq=2.0), product of:
                0.39767802 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.046906993 = queryNorm
                0.3746787 = fieldWeight in 5820, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.03125 = fieldNorm(doc=5820)
          0.33333334 = coord(1/3)
        0.21071991 = weight(_text_:2f in 5820) [ClassicSimilarity], result of:
          0.21071991 = score(doc=5820,freq=4.0), product of:
            0.39767802 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.046906993 = queryNorm
            0.5298757 = fieldWeight in 5820, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03125 = fieldNorm(doc=5820)
      0.5 = coord(2/4)
    
    Content
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Language and Information Technologies. Vgl.: https%3A%2F%2Fwww.cs.cmu.edu%2F~cx%2Fpapers%2Fknowledge_based_text_representation.pdf&usg=AOvVaw0SaTSvhWLTh__Uz_HtOtl3.
  3. Tang, X.-B.; Wei Wei, G,-C.L.; Zhu, J.: ¬An inference model of medical insurance fraud detection : based on ontology and SWRL (2017) 0.03
    0.029788423 = product of:
      0.059576847 = sum of:
        0.041913155 = weight(_text_:services in 3615) [ClassicSimilarity], result of:
          0.041913155 = score(doc=3615,freq=2.0), product of:
            0.17221296 = queryWeight, product of:
              3.6713707 = idf(docFreq=3057, maxDocs=44218)
              0.046906993 = queryNorm
            0.2433798 = fieldWeight in 3615, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6713707 = idf(docFreq=3057, maxDocs=44218)
              0.046875 = fieldNorm(doc=3615)
        0.017663691 = product of:
          0.035327382 = sum of:
            0.035327382 = weight(_text_:management in 3615) [ClassicSimilarity], result of:
              0.035327382 = score(doc=3615,freq=2.0), product of:
                0.15810528 = queryWeight, product of:
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.046906993 = queryNorm
                0.22344214 = fieldWeight in 3615, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3615)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Medical insurance fraud is common in many countries' medical insurance systems and represents a serious threat to the insurance funds and the benefits of patients. In this paper, we present an inference model of medical insurance fraud detection, based on a medical detection domain ontology that incorporates the knowledge base provided by the Medical Terminology, NKIMed, and Chinese Library Classification systems. Through analyzing the behaviors of irregular and fraudulent medical services, we defined the scope of the medical domain ontology relevant to the task and built the ontology about medical sciences and medical service behaviors. The ontology then utilizes Semantic Web Rule Language (SWRL) and Java Expert System Shell (JESS) to detect medical irregularities and mine implicit knowledge. The system can be used to improve the management of medical insurance risks.
  4. ISO/DIS 5127: Information and documentation - foundation and vocabulary (2013) 0.02
    0.024823686 = product of:
      0.049647372 = sum of:
        0.03492763 = weight(_text_:services in 6070) [ClassicSimilarity], result of:
          0.03492763 = score(doc=6070,freq=2.0), product of:
            0.17221296 = queryWeight, product of:
              3.6713707 = idf(docFreq=3057, maxDocs=44218)
              0.046906993 = queryNorm
            0.2028165 = fieldWeight in 6070, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6713707 = idf(docFreq=3057, maxDocs=44218)
              0.0390625 = fieldNorm(doc=6070)
        0.014719742 = product of:
          0.029439485 = sum of:
            0.029439485 = weight(_text_:management in 6070) [ClassicSimilarity], result of:
              0.029439485 = score(doc=6070,freq=2.0), product of:
                0.15810528 = queryWeight, product of:
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.046906993 = queryNorm
                0.18620178 = fieldWeight in 6070, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=6070)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    This standard provides the basic terms and their definitions in the field of information and documentation for the purpose of promoting and facilitating knowledge sharing and information exchange. This International Standard presents terms and definitions of selected concepts relevant to the field of information and documentation. If a definition is from other standards, the priority of selection is TC46 technical standards, then technical standards in relevant field, and then terminology related standards. The scope of this International Standard corresponds to that of ISO/TC46, Standardization of practices relating to libraries, documentation and information centres, publishing, archives, records management, museum documentation, indexing and abstracting services, and information science. ISO 5127 was prepared by Technical Committee ISO/TC 46, Information and Documentation, WG4, Terminology of information and documentation. This second edition cancels and replaces the first edition (ISO 5127:2001), which has been technically revised to overcome problems in the practical application of ISO 5127:2001 and to take account of the new developments in the field of information and documentation.
  5. Castellanos Ardila, J.P.: Investigation of an OSLC-domain targeting ISO 26262 : focus on the left side of the software V-model (2016) 0.02
    0.022297796 = product of:
      0.04459559 = sum of:
        0.027942104 = weight(_text_:services in 5819) [ClassicSimilarity], result of:
          0.027942104 = score(doc=5819,freq=2.0), product of:
            0.17221296 = queryWeight, product of:
              3.6713707 = idf(docFreq=3057, maxDocs=44218)
              0.046906993 = queryNorm
            0.1622532 = fieldWeight in 5819, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6713707 = idf(docFreq=3057, maxDocs=44218)
              0.03125 = fieldNorm(doc=5819)
        0.016653487 = product of:
          0.033306975 = sum of:
            0.033306975 = weight(_text_:management in 5819) [ClassicSimilarity], result of:
              0.033306975 = score(doc=5819,freq=4.0), product of:
                0.15810528 = queryWeight, product of:
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.046906993 = queryNorm
                0.21066327 = fieldWeight in 5819, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.03125 = fieldNorm(doc=5819)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Industries have adopted a standardized set of practices for developing their products. In the automotive domain, the provision of safety-compliant systems is guided by ISO 26262, a standard that specifies a set of requirements and recommendations for developing automotive safety-critical systems. For being in compliance with ISO 26262, the safety lifecycle proposed by the standard must be included in the development process of a vehicle. Besides, a safety case that shows that the system is acceptably safe has to be provided. The provision of a safety case implies the execution of a precise documentation process. This process makes sure that the work products are available and traceable. Further, the documentation management is defined in the standard as a mandatory activity and guidelines are proposed/imposed for its elaboration. It would be appropriate to point out that a well-documented safety lifecycle will provide the necessary inputs for the generation of an ISO 26262-compliant safety case. The OSLC (Open Services for Lifecycle Collaboration) standard and the maturing stack of semantic web technologies represent a promising integration platform for enabling semantic interoperability between the tools involved in the safety lifecycle. Tools for requirements, architecture, development management, among others, are expected to interact and shared data with the help of domains specifications created in OSLC. This thesis proposes the creation of an OSLC tool-chain infrastructure for sharing safety-related information, where fragments of safety information can be generated. The steps carried out during the elaboration of this master thesis consist in the identification, representation, and shaping of the RDF resources needed for the creation of a safety case. The focus of the thesis is limited to a tiny portion of the ISO 26262 left-hand side of the V-model, more exactly part 6 clause 8 of the standard: Software unit design and implementation. Regardless of the use of a restricted portion of the standard during the execution of this thesis, the findings can be extended to other parts, and the conclusions can be generalize. This master thesis is considered one of the first steps towards the provision of an OSLC-based and ISO 26262-compliant methodological approach for representing and shaping the work products resulting from the execution of the safety lifecycle, documentation required in the conformation of an ISO-compliant safety case.
  6. Deokattey, S.; Neelameghan, A.; Kumar, V.: ¬A method for developing a domain ontology : a case study for a multidisciplinary subject (2010) 0.02
    0.021425508 = product of:
      0.08570203 = sum of:
        0.08570203 = sum of:
          0.04121528 = weight(_text_:management in 3694) [ClassicSimilarity], result of:
            0.04121528 = score(doc=3694,freq=2.0), product of:
              0.15810528 = queryWeight, product of:
                3.3706124 = idf(docFreq=4130, maxDocs=44218)
                0.046906993 = queryNorm
              0.2606825 = fieldWeight in 3694, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.3706124 = idf(docFreq=4130, maxDocs=44218)
                0.0546875 = fieldNorm(doc=3694)
          0.04448675 = weight(_text_:22 in 3694) [ClassicSimilarity], result of:
            0.04448675 = score(doc=3694,freq=2.0), product of:
              0.1642603 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046906993 = queryNorm
              0.2708308 = fieldWeight in 3694, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0546875 = fieldNorm(doc=3694)
      0.25 = coord(1/4)
    
    Abstract
    A method to develop a prototype domain ontology has been described. The domain selected for the study is Accelerator Driven Systems. This is a multidisciplinary and interdisciplinary subject comprising Nuclear Physics, Nuclear and Reactor Engineering, Reactor Fuels and Radioactive Waste Management. Since Accelerator Driven Systems is a vast topic, select areas in it were singled out for the study. Both qualitative and quantitative methods such as Content analysis, Facet analysis and Clustering were used, to develop the web-based model.
    Date
    22. 7.2010 19:41:16
  7. Kiren, T.; Shoaib, M.: ¬A novel ontology matching approach using key concepts (2016) 0.02
    0.015303934 = product of:
      0.061215736 = sum of:
        0.061215736 = sum of:
          0.029439485 = weight(_text_:management in 2589) [ClassicSimilarity], result of:
            0.029439485 = score(doc=2589,freq=2.0), product of:
              0.15810528 = queryWeight, product of:
                3.3706124 = idf(docFreq=4130, maxDocs=44218)
                0.046906993 = queryNorm
              0.18620178 = fieldWeight in 2589, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.3706124 = idf(docFreq=4130, maxDocs=44218)
                0.0390625 = fieldNorm(doc=2589)
          0.03177625 = weight(_text_:22 in 2589) [ClassicSimilarity], result of:
            0.03177625 = score(doc=2589,freq=2.0), product of:
              0.1642603 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046906993 = queryNorm
              0.19345059 = fieldWeight in 2589, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=2589)
      0.25 = coord(1/4)
    
    Date
    20. 1.2015 18:30:22
    Source
    Aslib journal of information management. 68(2016) no.1, S.99-111
  8. Zhitomirsky-Geffet, M.; Bar-Ilan, J.: Towards maximal unification of semantically diverse ontologies for controversial domains (2014) 0.01
    0.012243148 = product of:
      0.04897259 = sum of:
        0.04897259 = sum of:
          0.023551589 = weight(_text_:management in 1634) [ClassicSimilarity], result of:
            0.023551589 = score(doc=1634,freq=2.0), product of:
              0.15810528 = queryWeight, product of:
                3.3706124 = idf(docFreq=4130, maxDocs=44218)
                0.046906993 = queryNorm
              0.14896142 = fieldWeight in 1634, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.3706124 = idf(docFreq=4130, maxDocs=44218)
                0.03125 = fieldNorm(doc=1634)
          0.025421001 = weight(_text_:22 in 1634) [ClassicSimilarity], result of:
            0.025421001 = score(doc=1634,freq=2.0), product of:
              0.1642603 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046906993 = queryNorm
              0.15476047 = fieldWeight in 1634, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.03125 = fieldNorm(doc=1634)
      0.25 = coord(1/4)
    
    Date
    20. 1.2015 18:30:22
    Source
    Aslib journal of information management. 66(2014) no.5, S.494-518
  9. Thenmalar, S.; Geetha, T.V.: Enhanced ontology-based indexing and searching (2014) 0.01
    0.010712754 = product of:
      0.042851016 = sum of:
        0.042851016 = sum of:
          0.02060764 = weight(_text_:management in 1633) [ClassicSimilarity], result of:
            0.02060764 = score(doc=1633,freq=2.0), product of:
              0.15810528 = queryWeight, product of:
                3.3706124 = idf(docFreq=4130, maxDocs=44218)
                0.046906993 = queryNorm
              0.13034125 = fieldWeight in 1633, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.3706124 = idf(docFreq=4130, maxDocs=44218)
                0.02734375 = fieldNorm(doc=1633)
          0.022243375 = weight(_text_:22 in 1633) [ClassicSimilarity], result of:
            0.022243375 = score(doc=1633,freq=2.0), product of:
              0.1642603 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046906993 = queryNorm
              0.1354154 = fieldWeight in 1633, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.02734375 = fieldNorm(doc=1633)
      0.25 = coord(1/4)
    
    Date
    20. 1.2015 18:30:22
    Source
    Aslib journal of information management. 66(2014) no.6, S.678-696
  10. Networked Knowledge Organisation Systems and Services - TPDL 2011 : The 10th European Networked Knowledge Organisation Systems (NKOS) Workshop (2011) 0.01
    0.010478289 = product of:
      0.041913155 = sum of:
        0.041913155 = weight(_text_:services in 6033) [ClassicSimilarity], result of:
          0.041913155 = score(doc=6033,freq=2.0), product of:
            0.17221296 = queryWeight, product of:
              3.6713707 = idf(docFreq=3057, maxDocs=44218)
              0.046906993 = queryNorm
            0.2433798 = fieldWeight in 6033, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6713707 = idf(docFreq=3057, maxDocs=44218)
              0.046875 = fieldNorm(doc=6033)
      0.25 = coord(1/4)
    
  11. Sperber, W.; Ion, P.D.F.: Content analysis and classification in mathematics (2011) 0.01
    0.010478289 = product of:
      0.041913155 = sum of:
        0.041913155 = weight(_text_:services in 4818) [ClassicSimilarity], result of:
          0.041913155 = score(doc=4818,freq=2.0), product of:
            0.17221296 = queryWeight, product of:
              3.6713707 = idf(docFreq=3057, maxDocs=44218)
              0.046906993 = queryNorm
            0.2433798 = fieldWeight in 4818, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6713707 = idf(docFreq=3057, maxDocs=44218)
              0.046875 = fieldNorm(doc=4818)
      0.25 = coord(1/4)
    
    Abstract
    The number of publications in mathematics increases faster each year. Presently far more than 100,000 mathematically relevant journal articles and books are published annually. Efficient and high-quality content analysis of this material is important for mathematical bibliographic services such as ZBMath or MathSciNet. Content analysis has different facets and levels: classification, keywords, abstracts and reviews, and (in the future) formula analysis. It is the opinion of the authors that the different levels have to be enhanced and combined using the methods and technology of the Semantic Web. In the presentation, the problems and deficits of the existing methods and tools, the state of the art and current activities are discussed. As a first step, the Mathematical Subject Classification Scheme (MSC), has been encoded with Simple Knowledge Organization System (SKOS) and Resource Description Framework (RDF) at its recent revision to MSC2010. The use of SKOS principally opens new possibilities for the enrichment and wider deployment of this classification scheme and for machine-based content analysis of mathematical publications.
  12. Padmavathi, T.; Krishnamurthy, M.: Ontological representation of knowledge for developing information services in food science and technology (2012) 0.01
    0.010478289 = product of:
      0.041913155 = sum of:
        0.041913155 = weight(_text_:services in 839) [ClassicSimilarity], result of:
          0.041913155 = score(doc=839,freq=2.0), product of:
            0.17221296 = queryWeight, product of:
              3.6713707 = idf(docFreq=3057, maxDocs=44218)
              0.046906993 = queryNorm
            0.2433798 = fieldWeight in 839, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6713707 = idf(docFreq=3057, maxDocs=44218)
              0.046875 = fieldNorm(doc=839)
      0.25 = coord(1/4)
    
  13. Semantic applications (2018) 0.01
    0.009013965 = product of:
      0.03605586 = sum of:
        0.03605586 = product of:
          0.07211172 = sum of:
            0.07211172 = weight(_text_:management in 5204) [ClassicSimilarity], result of:
              0.07211172 = score(doc=5204,freq=12.0), product of:
                0.15810528 = queryWeight, product of:
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.046906993 = queryNorm
                0.45609936 = fieldWeight in 5204, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5204)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Content
    Introduction.- Ontology Development.- Compliance using Metadata.- Variety Management for Big Data.- Text Mining in Economics.- Generation of Natural Language Texts.- Sentiment Analysis.- Building Concise Text Corpora from Web Contents.- Ontology-Based Modelling of Web Content.- Personalized Clinical Decision Support for Cancer Care.- Applications of Temporal Conceptual Semantic Systems.- Context-Aware Documentation in the Smart Factory.- Knowledge-Based Production Planning for Industry 4.0.- Information Exchange in Jurisdiction.- Supporting Automated License Clearing.- Managing cultural assets: Implementing typical cultural heritage archive's usage scenarios via Semantic Web technologies.- Semantic Applications for Process Management.- Domain-Specific Semantic Search Applications.
    LCSH
    Management information systems
    Management of Computing and Information Systems
    Subject
    Management information systems
    Management of Computing and Information Systems
  14. Semantische Technologien : Grundlagen - Konzepte - Anwendungen (2012) 0.01
    0.008644147 = product of:
      0.034576587 = sum of:
        0.034576587 = weight(_text_:services in 167) [ClassicSimilarity], result of:
          0.034576587 = score(doc=167,freq=4.0), product of:
            0.17221296 = queryWeight, product of:
              3.6713707 = idf(docFreq=3057, maxDocs=44218)
              0.046906993 = queryNorm
            0.20077808 = fieldWeight in 167, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.6713707 = idf(docFreq=3057, maxDocs=44218)
              0.02734375 = fieldNorm(doc=167)
      0.25 = coord(1/4)
    
    RSWK
    Semantic Web / Web Services / Semantische Modellierung / Ontologie <Wissensverarbeitung> / Suche / Navigieren / Anwendungsbereich / Aufsatzsammlung
    Subject
    Semantic Web / Web Services / Semantische Modellierung / Ontologie <Wissensverarbeitung> / Suche / Navigieren / Anwendungsbereich / Aufsatzsammlung
  15. Semantic technologies in content management systems : trends, applications and evaluations (2012) 0.01
    0.008326744 = product of:
      0.033306975 = sum of:
        0.033306975 = product of:
          0.06661395 = sum of:
            0.06661395 = weight(_text_:management in 4893) [ClassicSimilarity], result of:
              0.06661395 = score(doc=4893,freq=16.0), product of:
                0.15810528 = queryWeight, product of:
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.046906993 = queryNorm
                0.42132655 = fieldWeight in 4893, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4893)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    Content Management Systems (CMSs) are used in almost every industry by millions of end-user organizations. In contrast to the 90s, they are no longer used as isolated applications in one organization but they support critical core operations in business ecosystems. Content management today is more interactive and more integrative: interactive because end-users are increasingly content creators themselves and integrative because content elements can be embedded into various other applications. The authors of this book investigate how Semantic Technologies can increase interactivity and integration capabilities of CMSs and discuss their business value to millions of end-user organizations. This book has therefore the objective, to reflect existing applications as well as to discuss and present new applications for CMSs that use Semantic Technologies. An evaluation of 27 CMSs concludes this book and provides a basis for IT executives that plan to adopt or replace a CMS in the near future.
    Content
    On the Changing Market for Content Management Systems: Status and Outlook - Wolfgang Maass Empowering the Distributed Editorial Workforce - Steve McNally The Rise of Semantic-aware Applications - Stéphane Croisier Simplified Semantic Enhancement of JCR-based Content Applications -Bertrand Delacretaz and Michael Marth Dynamic Semantic Publishing - Jem Rayfield Semantics in the Domain of eGovernment - Luis Alvarez Sabucedo and Luis Anido Rifón The Interactive Knowledge Stack (IKS): A Vision for the Future of CMS - Wernher Behrendt Essential Requirements for Semantic CMS - Valentina Presutti Evaluation of Content Management Systems - Tobias Kowatsch and Wolfgang Maass CMS with No Particular Industry Focus (versch. Beiträge)
    LCSH
    Management information systems
    Subject
    Management information systems
    Theme
    Content Management System
  16. Drewer, P.; Massion, F; Pulitano, D: Was haben Wissensmodellierung, Wissensstrukturierung, künstliche Intelligenz und Terminologie miteinander zu tun? (2017) 0.01
    0.007944062 = product of:
      0.03177625 = sum of:
        0.03177625 = product of:
          0.0635525 = sum of:
            0.0635525 = weight(_text_:22 in 5576) [ClassicSimilarity], result of:
              0.0635525 = score(doc=5576,freq=2.0), product of:
                0.1642603 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046906993 = queryNorm
                0.38690117 = fieldWeight in 5576, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=5576)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    13.12.2017 14:17:22
  17. Nielsen, M.: Neuronale Netze : Alpha Go - Computer lernen Intuition (2018) 0.01
    0.007944062 = product of:
      0.03177625 = sum of:
        0.03177625 = product of:
          0.0635525 = sum of:
            0.0635525 = weight(_text_:22 in 4523) [ClassicSimilarity], result of:
              0.0635525 = score(doc=4523,freq=2.0), product of:
                0.1642603 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046906993 = queryNorm
                0.38690117 = fieldWeight in 4523, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=4523)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Source
    Spektrum der Wissenschaft. 2018, H.1, S.22-27
  18. Information and communication technologies : international conference; proceedings / ICT 2010, Kochi, Kerala, India, September 7 - 9, 2010 (2010) 0.01
    0.007285901 = product of:
      0.029143604 = sum of:
        0.029143604 = product of:
          0.058287207 = sum of:
            0.058287207 = weight(_text_:management in 4784) [ClassicSimilarity], result of:
              0.058287207 = score(doc=4784,freq=4.0), product of:
                0.15810528 = queryWeight, product of:
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.046906993 = queryNorm
                0.36866072 = fieldWeight in 4784, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4784)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    LCSH
    Database management
    Subject
    Database management
  19. Baker, T.; Bermès, E.; Coyle, K.; Dunsire, G.; Isaac, A.; Murray, P.; Panzer, M.; Schneider, J.; Singer, R.; Summers, E.; Waites, W.; Young, J.; Zeng, M.: Library Linked Data Incubator Group Final Report (2011) 0.01
    0.006985526 = product of:
      0.027942104 = sum of:
        0.027942104 = weight(_text_:services in 4796) [ClassicSimilarity], result of:
          0.027942104 = score(doc=4796,freq=2.0), product of:
            0.17221296 = queryWeight, product of:
              3.6713707 = idf(docFreq=3057, maxDocs=44218)
              0.046906993 = queryNorm
            0.1622532 = fieldWeight in 4796, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6713707 = idf(docFreq=3057, maxDocs=44218)
              0.03125 = fieldNorm(doc=4796)
      0.25 = coord(1/4)
    
    Abstract
    Key recommendations of the report are: - That library leaders identify sets of data as possible candidates for early exposure as Linked Data and foster a discussion about Open Data and rights; - That library standards bodies increase library participation in Semantic Web standardization, develop library data standards that are compatible with Linked Data, and disseminate best-practice design patterns tailored to library Linked Data; - That data and systems designers design enhanced user services based on Linked Data capabilities, create URIs for the items in library datasets, develop policies for managing RDF vocabularies and their URIs, and express library data by re-using or mapping to existing Linked Data vocabularies; - That librarians and archivists preserve Linked Data element sets and value vocabularies and apply library experience in curation and long-term preservation to Linked Data datasets.
  20. Ma, X.; Carranza, E.J.M.; Wu, C.; Meer, F.D. van der; Liu, G.: ¬A SKOS-based multilingual thesaurus of geological time scale for interoperability of online geological maps (2011) 0.01
    0.006985526 = product of:
      0.027942104 = sum of:
        0.027942104 = weight(_text_:services in 4800) [ClassicSimilarity], result of:
          0.027942104 = score(doc=4800,freq=2.0), product of:
            0.17221296 = queryWeight, product of:
              3.6713707 = idf(docFreq=3057, maxDocs=44218)
              0.046906993 = queryNorm
            0.1622532 = fieldWeight in 4800, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6713707 = idf(docFreq=3057, maxDocs=44218)
              0.03125 = fieldNorm(doc=4800)
      0.25 = coord(1/4)
    
    Abstract
    The usefulness of online geological maps is hindered by linguistic barriers. Multilingual geoscience thesauri alleviate linguistic barriers of geological maps. However, the benefits of multilingual geoscience thesauri for online geological maps are less studied. In this regard, we developed a multilingual thesaurus of geological time scale (GTS) to alleviate linguistic barriers of GTS records among online geological maps. We extended the Simple Knowledge Organization System (SKOS) model to represent the ordinal hierarchical structure of GTS terms. We collected GTS terms in seven languages and encoded them into a thesaurus by using the extended SKOS model. We implemented methods of characteristic-oriented term retrieval in JavaScript programs for accessing Web Map Services (WMS), recognizing GTS terms, and making translations. With the developed thesaurus and programs, we set up a pilot system to test recognitions and translations of GTS terms in online geological maps. Results of this pilot system proved the accuracy of the developed thesaurus and the functionality of the developed programs. Therefore, with proper deployments, SKOS-based multilingual geoscience thesauri can be functional for alleviating linguistic barriers among online geological maps and, thus, improving their interoperability.

Authors

Languages

  • e 63
  • d 8
  • pt 1
  • More… Less…

Types

  • a 53
  • el 10
  • m 8
  • s 5
  • x 5
  • n 1
  • r 1
  • More… Less…

Subjects