Search (6 results, page 1 of 1)

  • × theme_ss:"Wissensrepräsentation"
  • × year_i:[2020 TO 2030}
  1. MacFarlane, A.; Missaoui, S.; Frankowska-Takhari, S.: On machine learning and knowledge organization in multimedia information retrieval (2020) 0.05
    0.04942918 = product of:
      0.19771671 = sum of:
        0.19771671 = weight(_text_:objects in 5732) [ClassicSimilarity], result of:
          0.19771671 = score(doc=5732,freq=8.0), product of:
            0.33668926 = queryWeight, product of:
              5.315071 = idf(docFreq=590, maxDocs=44218)
              0.06334615 = queryNorm
            0.58723795 = fieldWeight in 5732, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              5.315071 = idf(docFreq=590, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5732)
      0.25 = coord(1/4)
    
    Abstract
    Recent technological developments have increased the use of machine learning to solve many problems, including many in information retrieval. Multimedia information retrieval as a problem represents a significant challenge to machine learning as a technological solution, but some problems can still be addressed by using appropriate AI techniques. We review the technological developments and provide a perspective on the use of machine learning in conjunction with knowledge organization to address multimedia IR needs. The semantic gap in multimedia IR remains a significant problem in the field, and solutions to them are many years off. However, new technological developments allow the use of knowledge organization and machine learning in multimedia search systems and services. Specifically, we argue that, the improvement of detection of some classes of lowlevel features in images music and video can be used in conjunction with knowledge organization to tag or label multimedia content for better retrieval performance. We provide an overview of the use of knowledge organization schemes in machine learning and make recommendations to information professionals on the use of this technology with knowledge organization techniques to solve multimedia IR problems. We introduce a five-step process model that extracts features from multimedia objects (Step 1) from both knowledge organization (Step 1a) and machine learning (Step 1b), merging them together (Step 2) to create an index of those multimedia objects (Step 3). We also overview further steps in creating an application to utilize the multimedia objects (Step 4) and maintaining and updating the database of features on those objects (Step 5).
  2. Machado, L.; Veronez Júnior, W.R.; Martínez-Ávila, D.: ¬A indeterminação ontológica dos conceitos : interpretações linguísticas e psicológicas [The ontologic indetermination of concepts: linguistic and psychological interpretations] (2022) 0.03
    0.029657505 = product of:
      0.11863002 = sum of:
        0.11863002 = weight(_text_:objects in 832) [ClassicSimilarity], result of:
          0.11863002 = score(doc=832,freq=2.0), product of:
            0.33668926 = queryWeight, product of:
              5.315071 = idf(docFreq=590, maxDocs=44218)
              0.06334615 = queryNorm
            0.35234275 = fieldWeight in 832, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.315071 = idf(docFreq=590, maxDocs=44218)
              0.046875 = fieldNorm(doc=832)
      0.25 = coord(1/4)
    
    Abstract
    In the context of Knowledge Organization (KO) the ontological focus is sometimes overlooked in studies related to the nature of the concept. This study presents an analysis with this purpose, questioning possible modes of existence of concepts (such as mental representations, cognitive abilities or abstract objects), framed in four different readings: a linguistic one, the psychological one, the epistemological one, and the ontological one; and focuses on the two first ones. The suitability of using the concept as an elementary unit of Knowledge Organization Systems (KOS) is analyzed according to the different perspectives. From a mental entity, passing to another one that exists in a non-mental realm, although also non-physical, moving on to another one with an objective linguistic existence.
  3. Silva, S.E.; Reis, L.P.; Fernandes, J.M.; Sester Pereira, A.D.: ¬A multi-layer framework for semantic modeling (2020) 0.03
    0.027961366 = product of:
      0.11184546 = sum of:
        0.11184546 = weight(_text_:objects in 5712) [ClassicSimilarity], result of:
          0.11184546 = score(doc=5712,freq=4.0), product of:
            0.33668926 = queryWeight, product of:
              5.315071 = idf(docFreq=590, maxDocs=44218)
              0.06334615 = queryNorm
            0.33219194 = fieldWeight in 5712, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              5.315071 = idf(docFreq=590, maxDocs=44218)
              0.03125 = fieldNorm(doc=5712)
      0.25 = coord(1/4)
    
    Abstract
    Purpose The purpose of this paper is to introduce a multi-level framework for semantic modeling (MFSM) based on four signification levels: objects, classes of entities, instances and domains. In addition, four fundamental propositions of the signification process underpin these levels, namely, classification, decomposition, instantiation and contextualization. Design/methodology/approach The deductive approach guided the design of this modeling framework. The authors empirically validated the MFSM in two ways. First, the authors identified the signification processes used in articles that deal with semantic modeling. The authors then applied the MFSM to model the semantic context of the literature about lean manufacturing, a field of management science. Findings The MFSM presents a highly consistent approach about the signification process, integrates the semantic modeling literature in a new and comprehensive view; and permits the modeling of any semantic context, thus facilitating the development of knowledge organization systems based on semantic search. Research limitations/implications The use of MFSM is manual and, thus, requires a considerable effort of the team that decides to model a semantic context. In this paper, the modeling was generated by specialists, and in the future should be applicated to lay users. Practical implications The MFSM opens up avenues to a new form of classification of documents, as well as for the development of tools based on the semantic search, and to investigate how users do their searches. Social implications The MFSM can be used to model archives semantically in public or private settings. In future, it can be incorporated to search engines for more efficient searches of users. Originality/value The MFSM provides a new and comprehensive approach about the elementary levels and activities in the process of signification. In addition, this new framework presents a new form to model semantically any context classifying its objects.
  4. Hauff-Hartig, S.: Wissensrepräsentation durch RDF: Drei angewandte Forschungsbeispiele : Bitte recht vielfältig: Wie Wissensgraphen, Disco und FaBiO Struktur in Mangas und die Humanities bringen (2021) 0.02
    0.017165057 = product of:
      0.06866023 = sum of:
        0.06866023 = weight(_text_:22 in 318) [ClassicSimilarity], result of:
          0.06866023 = score(doc=318,freq=2.0), product of:
            0.22182742 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.06334615 = queryNorm
            0.30952093 = fieldWeight in 318, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.0625 = fieldNorm(doc=318)
      0.25 = coord(1/4)
    
    Date
    22. 5.2021 12:43:05
  5. Jia, J.: From data to knowledge : the relationships between vocabularies, linked data and knowledge graphs (2021) 0.01
    0.010728161 = product of:
      0.042912643 = sum of:
        0.042912643 = weight(_text_:22 in 106) [ClassicSimilarity], result of:
          0.042912643 = score(doc=106,freq=2.0), product of:
            0.22182742 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.06334615 = queryNorm
            0.19345059 = fieldWeight in 106, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.0390625 = fieldNorm(doc=106)
      0.25 = coord(1/4)
    
    Date
    22. 1.2021 14:24:32
  6. Hocker, J.; Schindler, C.; Rittberger, M.: Participatory design for ontologies : a case study of an open science ontology for qualitative coding schemas (2020) 0.01
    0.008582529 = product of:
      0.034330115 = sum of:
        0.034330115 = weight(_text_:22 in 179) [ClassicSimilarity], result of:
          0.034330115 = score(doc=179,freq=2.0), product of:
            0.22182742 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.06334615 = queryNorm
            0.15476047 = fieldWeight in 179, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.03125 = fieldNorm(doc=179)
      0.25 = coord(1/4)
    
    Date
    20. 1.2015 18:30:22