Search (20 results, page 1 of 1)

  • × theme_ss:"Wissensrepräsentation"
  • × year_i:[2020 TO 2030}
  1. Ghosh, S.S.; Das, S.; Chatterjee, S.K.: Human-centric faceted approach for ontology construction (2020) 0.03
    0.032144334 = product of:
      0.08036084 = sum of:
        0.057061244 = weight(_text_:context in 5731) [ClassicSimilarity], result of:
          0.057061244 = score(doc=5731,freq=4.0), product of:
            0.17622331 = queryWeight, product of:
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.04251826 = queryNorm
            0.32380077 = fieldWeight in 5731, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5731)
        0.023299592 = weight(_text_:system in 5731) [ClassicSimilarity], result of:
          0.023299592 = score(doc=5731,freq=2.0), product of:
            0.13391352 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.04251826 = queryNorm
            0.17398985 = fieldWeight in 5731, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5731)
      0.4 = coord(2/5)
    
    Abstract
    In this paper, we propose an ontology building method, called human-centric faceted approach for ontology construction (HCFOC). HCFOC uses the human-centric approach, improvised with the idea of selective dissemination of information (SDI), to deal with context. Further, this ontology construction process makes use of facet analysis and an analytico-synthetic classification approach. This novel fusion contributes to the originality of HCFOC and distinguishes it from other existing ontology construction methodologies. Based on HCFOC, an ontology of the tourism domain has been designed using the Protégé-5.5.0 ontology editor. The HCFOC methodology has provided the necessary flexibility, extensibility, robustness and has facilitated the capturing of background knowledge. It models the tourism ontology in such a way that it is able to deal with the context of a tourist's information need with precision. This is evident from the result that more than 90% of the user's queries were successfully met. The use of domain knowledge and techniques from both library and information science and computer science has helped in the realization of the desired purpose of this ontology construction process. It is envisaged that HCFOC will have implications for ontology developers. The demonstrated tourism ontology can support any tourism information retrieval system.
  2. Peponakis, M.; Mastora, A.; Kapidakis, S.; Doerr, M.: Expressiveness and machine processability of Knowledge Organization Systems (KOS) : an analysis of concepts and relations (2020) 0.03
    0.029319597 = product of:
      0.07329899 = sum of:
        0.040348392 = weight(_text_:context in 5787) [ClassicSimilarity], result of:
          0.040348392 = score(doc=5787,freq=2.0), product of:
            0.17622331 = queryWeight, product of:
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.04251826 = queryNorm
            0.22896172 = fieldWeight in 5787, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5787)
        0.032950602 = weight(_text_:system in 5787) [ClassicSimilarity], result of:
          0.032950602 = score(doc=5787,freq=4.0), product of:
            0.13391352 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.04251826 = queryNorm
            0.24605882 = fieldWeight in 5787, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5787)
      0.4 = coord(2/5)
    
    Abstract
    This study considers the expressiveness (that is the expressive power or expressivity) of different types of Knowledge Organization Systems (KOS) and discusses its potential to be machine-processable in the context of the Semantic Web. For this purpose, the theoretical foundations of KOS are reviewed based on conceptualizations introduced by the Functional Requirements for Subject Authority Data (FRSAD) and the Simple Knowledge Organization System (SKOS); natural language processing techniques are also implemented. Applying a comparative analysis, the dataset comprises a thesaurus (Eurovoc), a subject headings system (LCSH) and a classification scheme (DDC). These are compared with an ontology (CIDOC-CRM) by focusing on how they define and handle concepts and relations. It was observed that LCSH and DDC focus on the formalism of character strings (nomens) rather than on the modelling of semantics; their definition of what constitutes a concept is quite fuzzy, and they comprise a large number of complex concepts. By contrast, thesauri have a coherent definition of what constitutes a concept, and apply a systematic approach to the modelling of relations. Ontologies explicitly define diverse types of relations, and are by their nature machine-processable. The paper concludes that the potential of both the expressiveness and machine processability of each KOS is extensively regulated by its structural rules. It is harder to represent subject headings and classification schemes as semantic networks with nodes and arcs, while thesauri are more suitable for such a representation. In addition, a paradigm shift is revealed which focuses on the modelling of relations between concepts, rather than the concepts themselves.
  3. Coladangelo, L.P.: Organizing controversy : toward cultural hospitality in controlled vocabularies through semantic annotation (2021) 0.02
    0.020367354 = product of:
      0.050918385 = sum of:
        0.032278713 = weight(_text_:context in 578) [ClassicSimilarity], result of:
          0.032278713 = score(doc=578,freq=2.0), product of:
            0.17622331 = queryWeight, product of:
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.04251826 = queryNorm
            0.18316938 = fieldWeight in 578, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.03125 = fieldNorm(doc=578)
        0.018639674 = weight(_text_:system in 578) [ClassicSimilarity], result of:
          0.018639674 = score(doc=578,freq=2.0), product of:
            0.13391352 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.04251826 = queryNorm
            0.13919188 = fieldWeight in 578, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.03125 = fieldNorm(doc=578)
      0.4 = coord(2/5)
    
    Abstract
    This research explores current controversies within country dance communities and the implications of cultural and ethical issues related to representation of gender and race in a KOS for an ICH, while investigating the importance of context and the applicability of semantic approaches in the implementation of synonym rings. During development of a controlled vocabulary to represent dance concepts for country dance choreography, this study encountered and considered the importance of history and culture regarding synonymous and near-synonymous terms used to describe dance roles and choreographic elements. A subset of names for the same choreographic concepts across four subdomains of country dance (English country dance, Scottish country dance, contra dance, and modern western square dance) were used as a case study. These concepts included traditionally gendered dance roles and choreographic terms with a racially pejorative history. Through the lens of existing research on ethical knowl­edge organization, this study focused on principles and methods of transparency, multivocality, cultural warrant, cultural hospitality, and intersectionality to conduct a domain analysis of country dance resources. The analysis revealed differing levels of engagement and distinction among dance practitioners and communities for their preferences to use different terms for the same concept. Various lexical, grammatical, affective, social, political, and cultural aspects also emerged as important contextual factors for the use and assignment of terms. As a result, this study proposes the use of semantic annotation to represent those contextual factors and to allow mechanisms of user choice in the design of a country dance knowl­edge organization system. Future research arising from this study would focus on expanding examination to other country dance genres and continued exploration of the use of semantic approaches to represent contextual factors in controlled vocabulary development.
  4. Jansen, B.; Browne, G.M.: Navigating information spaces : index / mind map / topic map? (2021) 0.02
    0.020296982 = product of:
      0.10148491 = sum of:
        0.10148491 = weight(_text_:index in 436) [ClassicSimilarity], result of:
          0.10148491 = score(doc=436,freq=4.0), product of:
            0.18579477 = queryWeight, product of:
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.04251826 = queryNorm
            0.5462205 = fieldWeight in 436, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.0625 = fieldNorm(doc=436)
      0.2 = coord(1/5)
    
    Abstract
    This paper discusses the use of wiki technology to provide a navigation structure for a collection of newspaper clippings. We overview the architecture of the wiki, discuss the navigation structure and pose the question: is the navigation structure an index, and if so, what type, or is it just a linkage structure or topic map. Does such a distinction really matter? Are these definitions in reality function based?
  5. Pepper, S.; Arnaud, P.J.L.: Absolutely PHAB : toward a general model of associative relations (2020) 0.01
    0.013195123 = product of:
      0.032987807 = sum of:
        0.023299592 = weight(_text_:system in 103) [ClassicSimilarity], result of:
          0.023299592 = score(doc=103,freq=2.0), product of:
            0.13391352 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.04251826 = queryNorm
            0.17398985 = fieldWeight in 103, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.0390625 = fieldNorm(doc=103)
        0.009688215 = product of:
          0.029064644 = sum of:
            0.029064644 = weight(_text_:29 in 103) [ClassicSimilarity], result of:
              0.029064644 = score(doc=103,freq=2.0), product of:
                0.14956595 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.04251826 = queryNorm
                0.19432661 = fieldWeight in 103, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=103)
          0.33333334 = coord(1/3)
      0.4 = coord(2/5)
    
    Abstract
    There have been many attempts at classifying the semantic modification relations (R) of N + N compounds but this work has not led to the acceptance of a definitive scheme, so that devising a reusable classification is a worthwhile aim. The scope of this undertaking is extended to other binominal lexemes, i.e. units that contain two thing-morphemes without explicitly stating R, like prepositional units, N + relational adjective units, etc. The 25-relation taxonomy of Bourque (2014) was tested against over 15,000 binominal lexemes from 106 languages and extended to a 29-relation scheme ("Bourque2") through the introduction of two new reversible relations. Bourque2 is then mapped onto Hatcher's (1960) four-relation scheme (extended by the addition of a fifth relation, similarity , as "Hatcher2"). This results in a two-tier system usable at different degrees of granularities. On account of its semantic proximity to compounding, metonymy is then taken into account, following Janda's (2011) suggestion that it plays a role in word formation; Peirsman and Geeraerts' (2006) inventory of 23 metonymic patterns is mapped onto Bourque2, confirming the identity of metonymic and binominal modification relations. Finally, Blank's (2003) and Koch's (2001) work on lexical semantics justifies the addition to the scheme of a third, superordinate level which comprises the three Aristotelean principles of similarity, contiguity and contrast.
  6. Silva, S.E.; Reis, L.P.; Fernandes, J.M.; Sester Pereira, A.D.: ¬A multi-layer framework for semantic modeling (2020) 0.01
    0.0129114855 = product of:
      0.064557426 = sum of:
        0.064557426 = weight(_text_:context in 5712) [ClassicSimilarity], result of:
          0.064557426 = score(doc=5712,freq=8.0), product of:
            0.17622331 = queryWeight, product of:
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.04251826 = queryNorm
            0.36633876 = fieldWeight in 5712, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.03125 = fieldNorm(doc=5712)
      0.2 = coord(1/5)
    
    Abstract
    Purpose The purpose of this paper is to introduce a multi-level framework for semantic modeling (MFSM) based on four signification levels: objects, classes of entities, instances and domains. In addition, four fundamental propositions of the signification process underpin these levels, namely, classification, decomposition, instantiation and contextualization. Design/methodology/approach The deductive approach guided the design of this modeling framework. The authors empirically validated the MFSM in two ways. First, the authors identified the signification processes used in articles that deal with semantic modeling. The authors then applied the MFSM to model the semantic context of the literature about lean manufacturing, a field of management science. Findings The MFSM presents a highly consistent approach about the signification process, integrates the semantic modeling literature in a new and comprehensive view; and permits the modeling of any semantic context, thus facilitating the development of knowledge organization systems based on semantic search. Research limitations/implications The use of MFSM is manual and, thus, requires a considerable effort of the team that decides to model a semantic context. In this paper, the modeling was generated by specialists, and in the future should be applicated to lay users. Practical implications The MFSM opens up avenues to a new form of classification of documents, as well as for the development of tools based on the semantic search, and to investigate how users do their searches. Social implications The MFSM can be used to model archives semantically in public or private settings. In future, it can be incorporated to search engines for more efficient searches of users. Originality/value The MFSM provides a new and comprehensive approach about the elementary levels and activities in the process of signification. In addition, this new framework presents a new form to model semantically any context classifying its objects.
  7. Oliveira Machado, L.M.; Almeida, M.B.; Souza, R.R.: What researchers are currently saying about ontologies : a review of recent Web of Science articles (2020) 0.01
    0.011412249 = product of:
      0.057061244 = sum of:
        0.057061244 = weight(_text_:context in 5881) [ClassicSimilarity], result of:
          0.057061244 = score(doc=5881,freq=4.0), product of:
            0.17622331 = queryWeight, product of:
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.04251826 = queryNorm
            0.32380077 = fieldWeight in 5881, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5881)
      0.2 = coord(1/5)
    
    Abstract
    Traditionally connected to philosophy, the term ontology is increasingly related to information systems areas. Some researchers consider the approaches of the two disciplinary contexts to be completely different. Others consider that, although different, they should talk to each other, as both seek to answer similar questions. With the extensive literature on this topic, we intend to contribute to the understanding of the use of the term ontology in current research and which references support this use. An exploratory study was developed with a mixed methodology and a sample collected from the Web of Science of articles publishe in 2018. The results show the current prevalence of computer science in studies related to ontology and also of Gruber's view suggesting ontology as kind of conceptualization, a dominant view in that field. Some researchers, particularly in the field of biomedicine, do not adhere to this dominant view but to another one that seems closer to ontological study in the philosophical context. The term ontology, in the context of information systems, appears to be consolidating with a meaning different from the original, presenting traces of the process of "metaphorization" in the transfer of the term between the two fields of study.
  8. Campos, L.M.: Princípios teóricos usados na elaboracao de ontologias e sua influência na recuperacao da informacao com uso de de inferências [Theoretical principles used in ontology building and their influence on information retrieval using inferences] (2021) 0.01
    0.011412249 = product of:
      0.057061244 = sum of:
        0.057061244 = weight(_text_:context in 826) [ClassicSimilarity], result of:
          0.057061244 = score(doc=826,freq=4.0), product of:
            0.17622331 = queryWeight, product of:
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.04251826 = queryNorm
            0.32380077 = fieldWeight in 826, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.0390625 = fieldNorm(doc=826)
      0.2 = coord(1/5)
    
    Abstract
    Several instruments of knowledge organization will reflect different possibilities for information retrieval. In this context, ontologies have a different potential because they allow knowledge discovery, which can be used to retrieve information in a more flexible way. However, this potential can be affected by the theoretical principles adopted in ontology building. The aim of this paper is to discuss, in an introductory way, how a (not exhaustive) set of theoretical principles can influence an aspect of ontologies: their use to obtain inferences. In this context, the role of Ingetraut Dahlberg's Theory of Concept is discussed. The methodology is exploratory, qualitative, and from the technical point of view it uses bibliographic research supported by the content analysis method. It also presents a small example of application as a proof of concept. As results, a discussion about the influence of conceptual definition on subsumption inferences is presented, theoretical contributions are suggested that should be used to guide the formation of hierarchical structures on which such inferences are supported, and examples are provided of how the absence of such contributions can lead to erroneous inferences
  9. Wei, W.; Liu, Y.-P.; Wei, L-R.: Feature-level sentiment analysis based on rules and fine-grained domain ontology (2020) 0.01
    0.009683615 = product of:
      0.04841807 = sum of:
        0.04841807 = weight(_text_:context in 5876) [ClassicSimilarity], result of:
          0.04841807 = score(doc=5876,freq=2.0), product of:
            0.17622331 = queryWeight, product of:
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.04251826 = queryNorm
            0.27475408 = fieldWeight in 5876, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.046875 = fieldNorm(doc=5876)
      0.2 = coord(1/5)
    
    Abstract
    Mining product reviews and sentiment analysis are of great significance, whether for academic research purposes or optimizing business strategies. We propose a feature-level sentiment analysis framework based on rules parsing and fine-grained domain ontology for Chinese reviews. Fine-grained ontology is used to describe synonymous expressions of product features, which are reflected in word changes in online reviews. First, a semiautomatic construction method is developed by using Word2Vec for fine-grained ontology. Then, featurelevel sentiment analysis that combines rules parsing and the fine-grained domain ontology is conducted to extract explicit and implicit features from product reviews. Finally, the domain sentiment dictionary and context sentiment dictionary are established to identify sentiment polarities for the extracted feature-sentiment combinations. An experiment is conducted on the basis of product reviews crawled from Chinese e-commerce websites. The results demonstrate the effectiveness of our approach.
  10. Machado, L.; Veronez Júnior, W.R.; Martínez-Ávila, D.: ¬A indeterminação ontológica dos conceitos : interpretações linguísticas e psicológicas [The ontologic indetermination of concepts: linguistic and psychological interpretations] (2022) 0.01
    0.009683615 = product of:
      0.04841807 = sum of:
        0.04841807 = weight(_text_:context in 832) [ClassicSimilarity], result of:
          0.04841807 = score(doc=832,freq=2.0), product of:
            0.17622331 = queryWeight, product of:
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.04251826 = queryNorm
            0.27475408 = fieldWeight in 832, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.046875 = fieldNorm(doc=832)
      0.2 = coord(1/5)
    
    Abstract
    In the context of Knowledge Organization (KO) the ontological focus is sometimes overlooked in studies related to the nature of the concept. This study presents an analysis with this purpose, questioning possible modes of existence of concepts (such as mental representations, cognitive abilities or abstract objects), framed in four different readings: a linguistic one, the psychological one, the epistemological one, and the ontological one; and focuses on the two first ones. The suitability of using the concept as an elementary unit of Knowledge Organization Systems (KOS) is analyzed according to the different perspectives. From a mental entity, passing to another one that exists in a non-mental realm, although also non-physical, moving on to another one with an objective linguistic existence.
  11. Zhou, H.; Guns, R.; Engels, T.C.E.: Towards indicating interdisciplinarity : characterizing interdisciplinary knowledge flow (2023) 0.01
    0.009683615 = product of:
      0.04841807 = sum of:
        0.04841807 = weight(_text_:context in 1072) [ClassicSimilarity], result of:
          0.04841807 = score(doc=1072,freq=2.0), product of:
            0.17622331 = queryWeight, product of:
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.04251826 = queryNorm
            0.27475408 = fieldWeight in 1072, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.046875 = fieldNorm(doc=1072)
      0.2 = coord(1/5)
    
    Abstract
    This study contributes to the recent discussions on indicating interdisciplinarity, that is, going beyond catch-all metrics of interdisciplinarity. We propose a contextual framework to improve the granularity and usability of the existing methodology for interdisciplinary knowledge flow (IKF) in which scientific disciplines import and export knowledge from/to other disciplines. To characterize the knowledge exchange between disciplines, we recognize three aspects of IKF under this framework, namely broadness, intensity, and homogeneity. We show how to utilize them to uncover different forms of interdisciplinarity, especially between disciplines with the largest volume of IKF. We apply this framework in two use cases, one at the level of disciplines and one at the level of journals, to show how it can offer a more holistic and detailed viewpoint on the interdisciplinarity of scientific entities than aggregated and context-unaware indicators. We further compare our proposed framework, an indicating process, with established indicators and discuss how such information tools on interdisciplinarity can assist science policy practices such as performance-based research funding systems and panel-based peer review processes.
  12. Balakrishnan, U,; Soergel, D.; Helfer, O.: Representing concepts through description logic expressions for knowledge organization system (KOS) mapping (2020) 0.01
    0.009319837 = product of:
      0.046599183 = sum of:
        0.046599183 = weight(_text_:system in 144) [ClassicSimilarity], result of:
          0.046599183 = score(doc=144,freq=2.0), product of:
            0.13391352 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.04251826 = queryNorm
            0.3479797 = fieldWeight in 144, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.078125 = fieldNorm(doc=144)
      0.2 = coord(1/5)
    
  13. MacFarlane, A.; Missaoui, S.; Frankowska-Takhari, S.: On machine learning and knowledge organization in multimedia information retrieval (2020) 0.01
    0.008970084 = product of:
      0.044850416 = sum of:
        0.044850416 = weight(_text_:index in 5732) [ClassicSimilarity], result of:
          0.044850416 = score(doc=5732,freq=2.0), product of:
            0.18579477 = queryWeight, product of:
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.04251826 = queryNorm
            0.24139762 = fieldWeight in 5732, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5732)
      0.2 = coord(1/5)
    
    Abstract
    Recent technological developments have increased the use of machine learning to solve many problems, including many in information retrieval. Multimedia information retrieval as a problem represents a significant challenge to machine learning as a technological solution, but some problems can still be addressed by using appropriate AI techniques. We review the technological developments and provide a perspective on the use of machine learning in conjunction with knowledge organization to address multimedia IR needs. The semantic gap in multimedia IR remains a significant problem in the field, and solutions to them are many years off. However, new technological developments allow the use of knowledge organization and machine learning in multimedia search systems and services. Specifically, we argue that, the improvement of detection of some classes of lowlevel features in images music and video can be used in conjunction with knowledge organization to tag or label multimedia content for better retrieval performance. We provide an overview of the use of knowledge organization schemes in machine learning and make recommendations to information professionals on the use of this technology with knowledge organization techniques to solve multimedia IR problems. We introduce a five-step process model that extracts features from multimedia objects (Step 1) from both knowledge organization (Step 1a) and machine learning (Step 1b), merging them together (Step 2) to create an index of those multimedia objects (Step 3). We also overview further steps in creating an application to utilize the multimedia objects (Step 4) and maintaining and updating the database of features on those objects (Step 5).
  14. Machado, L.M.O.: Ontologies in knowledge organization (2021) 0.01
    0.007908144 = product of:
      0.03954072 = sum of:
        0.03954072 = weight(_text_:system in 198) [ClassicSimilarity], result of:
          0.03954072 = score(doc=198,freq=4.0), product of:
            0.13391352 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.04251826 = queryNorm
            0.29527056 = fieldWeight in 198, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.046875 = fieldNorm(doc=198)
      0.2 = coord(1/5)
    
    Abstract
    Within the knowledge organization systems (KOS) set, the term "ontology" is paradigmatic of the terminological ambiguity in different typologies. Contributing to this situation is the indiscriminate association of the term "ontology", both as a specific type of KOS and as a process of categorization, due to the interdisciplinary use of the term with different meanings. We present a systematization of the perspectives of different authors of ontologies, as representational artifacts, seeking to contribute to terminological clarification. Focusing the analysis on the intention, semantics and modulation of ontologies, it was possible to notice two broad perspectives regarding ontologies as artifacts that coexist in the knowledge organization systems spectrum. We have ontologies viewed, on the one hand, as an evolution in terms of complexity of traditional conceptual systems, and on the other hand, as a system that organizes ontological rather than epistemological knowledge. The focus of ontological analysis is the item to model and not the intentions that motivate the construction of the system.
  15. Fagundes, P.B.; Freund, G.P.; Vital, L.P.; Monteiro de Barros, C.; Macedo, D.D.J.de: Taxonomias, ontologias e tesauros : possibilidades de contribuição para o processo de Engenharia de Requisitos (2020) 0.01
    0.0065901205 = product of:
      0.032950602 = sum of:
        0.032950602 = weight(_text_:system in 5828) [ClassicSimilarity], result of:
          0.032950602 = score(doc=5828,freq=4.0), product of:
            0.13391352 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.04251826 = queryNorm
            0.24605882 = fieldWeight in 5828, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5828)
      0.2 = coord(1/5)
    
    Abstract
    Some of the fundamental activities of the software development process are related to the discipline of Requirements Engineering, whose objective is the discovery, analysis, documentation and verification of the requirements that will be part of the system. Requirements are the conditions or capabilities that software must have or perform to meet the users needs. The present study is being developed to propose a model of cooperation between Information Science and Requirements Engineering. Aims to present the analysis results on the possibilities of using the knowledge organization systems: taxonomies, thesauri and ontologies during the activities of Requirements Engineering: design, survey, elaboration, negotiation, specification, validation and requirements management. From the results obtained it was possible to identify in which stage of the Requirements Engineering process, each type of knowledge organization system could be used. We expect that this study put in evidence the need for new researchs and proposals to strengt the exchange between Information Science, as a science that has information as object of study, and the Requirements Engineering which has in the information the raw material to identify the informational needs of software users.
  16. Banerjee, D.; Ghosh, S.S.; Mondal, T.M.: OnE : an ontology evaluation framework (2020) 0.01
    0.0055919024 = product of:
      0.027959513 = sum of:
        0.027959513 = weight(_text_:system in 5898) [ClassicSimilarity], result of:
          0.027959513 = score(doc=5898,freq=2.0), product of:
            0.13391352 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.04251826 = queryNorm
            0.20878783 = fieldWeight in 5898, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.046875 = fieldNorm(doc=5898)
      0.2 = coord(1/5)
    
    Abstract
    A comprehensive set of evaluation criteria, named OnE, for evaluating ontologies has been proposed in this paper. Each criterion of OnE has been defined in a way such that together they are capable of evaluating any ontology from all aspects. The process of using OnE for evaluation has been demonstrated by evaluating chemical ontologies. Also, for this purpose, an ontology on the domain of agricultural chemicals has been constructed by following the human-centric faceted approach for ontology construction (HCFOC) and has been evaluated using OnE. The results obtained after the evaluation has provided insights about the ontologies. The constructed ontology aims to support any information system trying to support farmers in the process of decision making while selecting chemicals for use in agriculture. Also, it is envisaged that the demonstrated ontology and the set of evaluation criteria named OnE will redefine ontology evaluation and make it easy while making a strong impact on ontology developers.
  17. Pankowski, T.: Ontological databases with faceted queries (2022) 0.00
    0.0046599186 = product of:
      0.023299592 = sum of:
        0.023299592 = weight(_text_:system in 666) [ClassicSimilarity], result of:
          0.023299592 = score(doc=666,freq=2.0), product of:
            0.13391352 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.04251826 = queryNorm
            0.17398985 = fieldWeight in 666, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.0390625 = fieldNorm(doc=666)
      0.2 = coord(1/5)
    
    Abstract
    The success of the use of ontology-based systems depends on efficient and user-friendly methods of formulating queries against the ontology. We propose a method to query a class of ontologies, called facet ontologies ( fac-ontologies ), using a faceted human-oriented approach. A fac-ontology has two important features: (a) a hierarchical view of it can be defined as a nested facet over this ontology and the view can be used as a faceted interface to create queries and to explore the ontology; (b) the ontology can be converted into an ontological database , the ABox of which is stored in a database, and the faceted queries are evaluated against this database. We show that the proposed faceted interface makes it possible to formulate queries that are semantically equivalent to $${\mathcal {SROIQ}}^{Fac}$$ SROIQ Fac , a limited version of the $${\mathcal {SROIQ}}$$ SROIQ description logic. The TBox of a fac-ontology is divided into a set of rules defining intensional predicates and a set of constraint rules to be satisfied by the database. We identify a class of so-called reflexive weak cycles in a set of constraint rules and propose a method to deal with them in the chase procedure. The considerations are illustrated with solutions implemented in the DAFO system ( data access based on faceted queries over ontologies ).
  18. Hauff-Hartig, S.: Wissensrepräsentation durch RDF: Drei angewandte Forschungsbeispiele : Bitte recht vielfältig: Wie Wissensgraphen, Disco und FaBiO Struktur in Mangas und die Humanities bringen (2021) 0.00
    0.0030723398 = product of:
      0.015361699 = sum of:
        0.015361699 = product of:
          0.046085097 = sum of:
            0.046085097 = weight(_text_:22 in 318) [ClassicSimilarity], result of:
              0.046085097 = score(doc=318,freq=2.0), product of:
                0.1488917 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04251826 = queryNorm
                0.30952093 = fieldWeight in 318, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=318)
          0.33333334 = coord(1/3)
      0.2 = coord(1/5)
    
    Date
    22. 5.2021 12:43:05
  19. Jia, J.: From data to knowledge : the relationships between vocabularies, linked data and knowledge graphs (2021) 0.00
    0.0019202124 = product of:
      0.009601062 = sum of:
        0.009601062 = product of:
          0.028803186 = sum of:
            0.028803186 = weight(_text_:22 in 106) [ClassicSimilarity], result of:
              0.028803186 = score(doc=106,freq=2.0), product of:
                0.1488917 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04251826 = queryNorm
                0.19345059 = fieldWeight in 106, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=106)
          0.33333334 = coord(1/3)
      0.2 = coord(1/5)
    
    Date
    22. 1.2021 14:24:32
  20. Hocker, J.; Schindler, C.; Rittberger, M.: Participatory design for ontologies : a case study of an open science ontology for qualitative coding schemas (2020) 0.00
    0.0015361699 = product of:
      0.0076808496 = sum of:
        0.0076808496 = product of:
          0.023042548 = sum of:
            0.023042548 = weight(_text_:22 in 179) [ClassicSimilarity], result of:
              0.023042548 = score(doc=179,freq=2.0), product of:
                0.1488917 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04251826 = queryNorm
                0.15476047 = fieldWeight in 179, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=179)
          0.33333334 = coord(1/3)
      0.2 = coord(1/5)
    
    Date
    20. 1.2015 18:30:22