Search (24 results, page 1 of 2)

  • × type_ss:"a"
  • × type_ss:"el"
  • × year_i:[1990 TO 2000}
  1. GERHARD : eine Spezialsuchmaschine für die Wissenschaft (1998) 0.09
    0.091239 = product of:
      0.1368585 = sum of:
        0.054054987 = weight(_text_:im in 381) [ClassicSimilarity], result of:
          0.054054987 = score(doc=381,freq=2.0), product of:
            0.1442303 = queryWeight, product of:
              2.8267863 = idf(docFreq=7115, maxDocs=44218)
              0.051022716 = queryNorm
            0.37478244 = fieldWeight in 381, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.8267863 = idf(docFreq=7115, maxDocs=44218)
              0.09375 = fieldNorm(doc=381)
        0.0828035 = product of:
          0.12420525 = sum of:
            0.062307306 = weight(_text_:online in 381) [ClassicSimilarity], result of:
              0.062307306 = score(doc=381,freq=2.0), product of:
                0.1548489 = queryWeight, product of:
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.051022716 = queryNorm
                0.40237486 = fieldWeight in 381, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.09375 = fieldNorm(doc=381)
            0.06189794 = weight(_text_:retrieval in 381) [ClassicSimilarity], result of:
              0.06189794 = score(doc=381,freq=2.0), product of:
                0.15433937 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.051022716 = queryNorm
                0.40105087 = fieldWeight in 381, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.09375 = fieldNorm(doc=381)
          0.6666667 = coord(2/3)
      0.6666667 = coord(2/3)
    
    Theme
    Klassifikationssysteme im Online-Retrieval
  2. Priss, U.: Faceted knowledge representation (1999) 0.02
    0.018777166 = product of:
      0.056331497 = sum of:
        0.056331497 = product of:
          0.08449724 = sum of:
            0.03610713 = weight(_text_:retrieval in 2654) [ClassicSimilarity], result of:
              0.03610713 = score(doc=2654,freq=2.0), product of:
                0.15433937 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.051022716 = queryNorm
                0.23394634 = fieldWeight in 2654, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2654)
            0.048390117 = weight(_text_:22 in 2654) [ClassicSimilarity], result of:
              0.048390117 = score(doc=2654,freq=2.0), product of:
                0.17867287 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051022716 = queryNorm
                0.2708308 = fieldWeight in 2654, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2654)
          0.6666667 = coord(2/3)
      0.33333334 = coord(1/3)
    
    Abstract
    Faceted Knowledge Representation provides a formalism for implementing knowledge systems. The basic notions of faceted knowledge representation are "unit", "relation", "facet" and "interpretation". Units are atomic elements and can be abstract elements or refer to external objects in an application. Relations are sequences or matrices of 0 and 1's (binary matrices). Facets are relational structures that combine units and relations. Each facet represents an aspect or viewpoint of a knowledge system. Interpretations are mappings that can be used to translate between different representations. This paper introduces the basic notions of faceted knowledge representation. The formalism is applied here to an abstract modeling of a faceted thesaurus as used in information retrieval.
    Date
    22. 1.2016 17:30:31
  3. Priss, U.: Description logic and faceted knowledge representation (1999) 0.02
    0.016094714 = product of:
      0.048284143 = sum of:
        0.048284143 = product of:
          0.072426215 = sum of:
            0.03094897 = weight(_text_:retrieval in 2655) [ClassicSimilarity], result of:
              0.03094897 = score(doc=2655,freq=2.0), product of:
                0.15433937 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.051022716 = queryNorm
                0.20052543 = fieldWeight in 2655, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2655)
            0.04147724 = weight(_text_:22 in 2655) [ClassicSimilarity], result of:
              0.04147724 = score(doc=2655,freq=2.0), product of:
                0.17867287 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051022716 = queryNorm
                0.23214069 = fieldWeight in 2655, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2655)
          0.6666667 = coord(2/3)
      0.33333334 = coord(1/3)
    
    Abstract
    The term "facet" was introduced into the field of library classification systems by Ranganathan in the 1930's [Ranganathan, 1962]. A facet is a viewpoint or aspect. In contrast to traditional classification systems, faceted systems are modular in that a domain is analyzed in terms of baseline facets which are then synthesized. In this paper, the term "facet" is used in a broader meaning. Facets can describe different aspects on the same level of abstraction or the same aspect on different levels of abstraction. The notion of facets is related to database views, multicontexts and conceptual scaling in formal concept analysis [Ganter and Wille, 1999], polymorphism in object-oriented design, aspect-oriented programming, views and contexts in description logic and semantic networks. This paper presents a definition of facets in terms of faceted knowledge representation that incorporates the traditional narrower notion of facets and potentially facilitates translation between different knowledge representation formalisms. A goal of this approach is a modular, machine-aided knowledge base design mechanism. A possible application is faceted thesaurus construction for information retrieval and data mining. Reasoning complexity depends on the size of the modules (facets). A more general analysis of complexity will be left for future research.
    Date
    22. 1.2016 17:30:31
  4. Zimmer, D.E.: Mr. Searle im Chinesischen Zimmer : über Computer, Gehirne und Geist (1990) 0.01
    0.012740883 = product of:
      0.03822265 = sum of:
        0.03822265 = weight(_text_:im in 4385) [ClassicSimilarity], result of:
          0.03822265 = score(doc=4385,freq=4.0), product of:
            0.1442303 = queryWeight, product of:
              2.8267863 = idf(docFreq=7115, maxDocs=44218)
              0.051022716 = queryNorm
            0.26501122 = fieldWeight in 4385, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.8267863 = idf(docFreq=7115, maxDocs=44218)
              0.046875 = fieldNorm(doc=4385)
      0.33333334 = coord(1/3)
    
    Abstract
    EINE PROVOKATION feiert Geburtstag. Vor nunmehr zehn Jahren löste sie eine kontroverse Debatte aus, die anders als die meisten wissenschaftlichen Debatten nach dem Austausch der Argumente und Daten nicht im Nu erledigt war. Sie zieht sich bis heute hin und macht keinerlei Anstalten, sich zu legen. Vordergründig geht es um Chinesische Zimmer und Chinesische Turnhallen, um Schnellrestaurants, um sprechende Maschinen, um Computer und wieviel Intelligenz sie eines Tages ihr eigen nennen könnten - und in Wahrheit bei alledem um die Letzten Dinge, jene, die Leidenschaften wekken: Was ist der menschliche Geist? Kann es eines Tages eine Maschine geben, die Geist hat? Was die Kontroverse in Gang setzte, war eine Herausforderung an die junge Disziplin der Künstlichen Intelligenz. Das menschliche Geistorgan, so lautete sie, funktioniere nicht wie ein Computer, und folglich könne ein Computer es auch nie und nimmer duplizieren.
  5. Dunning, A.: Do we still need search engines? (1999) 0.01
    0.01075336 = product of:
      0.03226008 = sum of:
        0.03226008 = product of:
          0.09678023 = sum of:
            0.09678023 = weight(_text_:22 in 6021) [ClassicSimilarity], result of:
              0.09678023 = score(doc=6021,freq=2.0), product of:
                0.17867287 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051022716 = queryNorm
                0.5416616 = fieldWeight in 6021, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=6021)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Source
    Ariadne. 1999, no.22
  6. Retti, G.: "Schlagwortnormdatei" und "Regeln für den Schlagwortkatalog" (1995) 0.01
    0.010510692 = product of:
      0.031532075 = sum of:
        0.031532075 = weight(_text_:im in 1354) [ClassicSimilarity], result of:
          0.031532075 = score(doc=1354,freq=2.0), product of:
            0.1442303 = queryWeight, product of:
              2.8267863 = idf(docFreq=7115, maxDocs=44218)
              0.051022716 = queryNorm
            0.2186231 = fieldWeight in 1354, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.8267863 = idf(docFreq=7115, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1354)
      0.33333334 = coord(1/3)
    
    Abstract
    Es scheint naheliegend, daß der Unsicherheit, welche durch die "Vielfalt der möglichen sprachlichen Ausdrucksweisen für einen Sachverhalt" beim Beschlagworter ausgelöst wird, dadurch begegnet werden soll, "daß immer nur eine der möglichen Formen gewählt wird". Der Ruf nach einer "Standardisie- rung der Schlagwörter" geht damit Hand in Hand. Zwei Ergebnisse dieser Standardisierungsbemühungen werden im folgenden dargestellt; ein Punkt aber sollte dabei nicht übersehen werden: "Ein allgemein akzeptiertes Verfahren der Inhaltsanalyse gibt es bisher nicht und es ist offen, ob das Problem überhaupt gelöst werden kann." Standardisiert kann demnach nur das Schlagwortsystem werden, nicht aber seine konkrete Anwendung bei der inhaltlichen Erschließung von Dokumenten.
  7. Rötzer, F.: Sahra Wagenknecht über die Digitalisierung (1999) 0.01
    0.010510692 = product of:
      0.031532075 = sum of:
        0.031532075 = weight(_text_:im in 3951) [ClassicSimilarity], result of:
          0.031532075 = score(doc=3951,freq=2.0), product of:
            0.1442303 = queryWeight, product of:
              2.8267863 = idf(docFreq=7115, maxDocs=44218)
              0.051022716 = queryNorm
            0.2186231 = fieldWeight in 3951, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.8267863 = idf(docFreq=7115, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3951)
      0.33333334 = coord(1/3)
    
    Abstract
    Florian Rötzer hat in einem langen Gespräch mit Sahra Wagenknecht, aus dem das Buch "Couragiert gegen den Strom. Über Goethe, die Macht und die Zukunft!" hervorgegangen ist, u.a. darüber gesprochen, wie Kultur und philosophisches Denken die politischen Vorstellungen und den politischen Stil der linken Politikerin geprägt haben. Dabei ging es auch um den Kapitalismus und dessen Abschaffung, um den Kern linker Politik, die Konkurrenz in der Wirtschaft und auch über die Digitalisierung sowie die Ideen, mit einer Maschinensteuer oder einem bedingungslosen Grundeinkommen das Schlimmste zu verhindern. Telepolis veröffentlicht einen Auszug aus dem Buch, das im Westendverlag erschienen ist.
  8. Dolin, R.; Agrawal, D.; El Abbadi, A.; Pearlman, J.: Using automated classification for summarizing and selecting heterogeneous information sources (1998) 0.01
    0.009758486 = product of:
      0.029275458 = sum of:
        0.029275458 = product of:
          0.043913186 = sum of:
            0.02202896 = weight(_text_:online in 1253) [ClassicSimilarity], result of:
              0.02202896 = score(doc=1253,freq=4.0), product of:
                0.1548489 = queryWeight, product of:
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.051022716 = queryNorm
                0.142261 = fieldWeight in 1253, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=1253)
            0.021884227 = weight(_text_:retrieval in 1253) [ClassicSimilarity], result of:
              0.021884227 = score(doc=1253,freq=4.0), product of:
                0.15433937 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.051022716 = queryNorm
                0.1417929 = fieldWeight in 1253, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=1253)
          0.6666667 = coord(2/3)
      0.33333334 = coord(1/3)
    
    Abstract
    Information retrieval over the Internet increasingly requires the filtering of thousands of heterogeneous information sources. Important sources of information include not only traditional databases with structured data and queries, but also increasing numbers of non-traditional, semi- or unstructured collections such as Web sites, FTP archives, etc. As the number and variability of sources increases, new ways of automatically summarizing, discovering, and selecting collections relevant to a user's query are needed. One such method involves the use of classification schemes, such as the Library of Congress Classification (LCC), within which a collection may be represented based on its content, irrespective of the structure of the actual data or documents. For such a system to be useful in a large-scale distributed environment, it must be easy to use for both collection managers and users. As a result, it must be possible to classify documents automatically within a classification scheme. Furthermore, there must be a straightforward and intuitive interface with which the user may use the scheme to assist in information retrieval (IR). Our work with the Alexandria Digital Library (ADL) Project focuses on geo-referenced information, whether text, maps, aerial photographs, or satellite images. As a result, we have emphasized techniques which work with both text and non-text, such as combined textual and graphical queries, multi-dimensional indexing, and IR methods which are not solely dependent on words or phrases. Part of this work involves locating relevant online sources of information. In particular, we have designed and are currently testing aspects of an architecture, Pharos, which we believe will scale up to 1.000.000 heterogeneous sources. Pharos accommodates heterogeneity in content and format, both among multiple sources as well as within a single source. That is, we consider sources to include Web sites, FTP archives, newsgroups, and full digital libraries; all of these systems can include a wide variety of content and multimedia data formats. Pharos is based on the use of hierarchical classification schemes. These include not only well-known 'subject' (or 'concept') based schemes such as the Dewey Decimal System and the LCC, but also, for example, geographic classifications, which might be constructed as layers of smaller and smaller hierarchical longitude/latitude boxes. Pharos is designed to work with sophisticated queries which utilize subjects, geographical locations, temporal specifications, and other types of information domains. The Pharos architecture requires that hierarchically structured collection metadata be extracted so that it can be partitioned in such a way as to greatly enhance scalability. Automated classification is important to Pharos because it allows information sources to extract the requisite collection metadata automatically that must be distributed.
    We are currently experimenting with newsgroups as collections. We have built an initial prototype which automatically classifies and summarizes newsgroups within the LCC. (The prototype can be tested below, and more details may be found at http://pharos.alexandria.ucsb.edu/). The prototype uses electronic library catalog records as a `training set' and Latent Semantic Indexing (LSI) for IR. We use the training set to build a rich set of classification terminology, and associate these terms with the relevant categories in the LCC. This association between terms and classification categories allows us to relate users' queries to nodes in the LCC so that users can select appropriate query categories. Newsgroups are similarly associated with classification categories. Pharos then matches the categories selected by users to relevant newsgroups. In principle, this approach allows users to exclude newsgroups that might have been selected based on an unintended meaning of a query term, and to include newsgroups with relevant content even though the exact query terms may not have been used. This work is extensible to other types of classification, including geographical, temporal, and image feature. Before discussing the methodology of the collection summarization and selection, we first present an online demonstration below. The demonstration is not intended to be a complete end-user interface. Rather, it is intended merely to offer a view of the process to suggest the "look and feel" of the prototype. The demo works as follows. First supply it with a few keywords of interest. The system will then use those terms to try to return to you the most relevant subject categories within the LCC. Assuming that the system recognizes any of your terms (it has over 400,000 terms indexed), it will give you a list of 15 LCC categories sorted by relevancy ranking. From there, you have two choices. The first choice, by clicking on the "News" links, is to get a list of newsgroups which the system has identified as relevant to the LCC category you select. The other choice, by clicking on the LCC ID links, is to enter the LCC hierarchy starting at the category of your choice and navigate the tree until you locate the best category for your query. From there, again, you can get a list of newsgroups by clicking on the "News" links. After having shown this demonstration to many people, we would like to suggest that you first give it easier examples before trying to break it. For example, "prostate cancer" (discussed below), "remote sensing", "investment banking", and "gershwin" all work reasonably well.
  9. Karner, J.: Mailüfterl, Al Chorezmi und Künstliche Intelligenz (1999) 0.01
    0.009009165 = product of:
      0.027027493 = sum of:
        0.027027493 = weight(_text_:im in 3950) [ClassicSimilarity], result of:
          0.027027493 = score(doc=3950,freq=2.0), product of:
            0.1442303 = queryWeight, product of:
              2.8267863 = idf(docFreq=7115, maxDocs=44218)
              0.051022716 = queryNorm
            0.18739122 = fieldWeight in 3950, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.8267863 = idf(docFreq=7115, maxDocs=44218)
              0.046875 = fieldNorm(doc=3950)
      0.33333334 = coord(1/3)
    
    Abstract
    Der österreichische Computerpionier Heinz Zemanek hat mit dem Lötkolben in der Hand begonnen, Computer zu bauen. Er hat die Entwicklung des Computers aktiv miterlebt - von der Relais-Additionsschaltung bis zum Halbleiter-Chip, von der Lochstreifen-Befehlseingabe bis zur formalen Definition der Programmiersprachen. Er hat kybernetische Modelle mit Studenten und Mitarbeitern gebaut und programmiert. Gemeinsam mit seinem Kollegen Konrad Zuse gilt er als Begründer der modernen Datenverarbeitung in Europa. 1954 baute er das Mailüfterl einen volltransistorisierten Binär-Dezimal-Rechenautomaten", der aus 3.000 Transistoren, 5.000 Dioden und 30 km Draht bestand. Mit einer Breite von 4 Metern, einer Höhe von 2,5 Metern und einer Tiefe von 50 Zentimetern war das Ungetüm gegenüber den damaligen Röhrenrechnern klein. Auch mit kybernetischen Grundmodellen wie der "Maus im Labyrinth", der "künstlichen Schildkröte" oder dem "Homöostat" betrat er Neuland.
  10. Rindflesch, T.C.; Aronson, A.R.: Semantic processing in information retrieval (1993) 0.01
    0.008970889 = product of:
      0.026912667 = sum of:
        0.026912667 = product of:
          0.080738 = sum of:
            0.080738 = weight(_text_:retrieval in 4121) [ClassicSimilarity], result of:
              0.080738 = score(doc=4121,freq=10.0), product of:
                0.15433937 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.051022716 = queryNorm
                0.5231199 = fieldWeight in 4121, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4121)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Abstract
    Intuition suggests that one way to enhance the information retrieval process would be the use of phrases to characterize the contents of text. A number of researchers, however, have noted that phrases alone do not improve retrieval effectiveness. In this paper we briefly review the use of phrases in information retrieval and then suggest extensions to this paradigm using semantic information. We claim that semantic processing, which can be viewed as expressing relations between the concepts represented by phrases, will in fact enhance retrieval effectiveness. The availability of the UMLS® domain model, which we exploit extensively, significantly contributes to the feasibility of this processing.
  11. Oard, D.W.: Alternative approaches for cross-language text retrieval (1997) 0.01
    0.007769018 = product of:
      0.023307053 = sum of:
        0.023307053 = product of:
          0.06992116 = sum of:
            0.06992116 = weight(_text_:retrieval in 1164) [ClassicSimilarity], result of:
              0.06992116 = score(doc=1164,freq=30.0), product of:
                0.15433937 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.051022716 = queryNorm
                0.45303512 = fieldWeight in 1164, product of:
                  5.477226 = tf(freq=30.0), with freq of:
                    30.0 = termFreq=30.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=1164)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Abstract
    The explosive growth of the Internet and other sources of networked information have made automatic mediation of access to networked information sources an increasingly important problem. Much of this information is expressed as electronic text, and it is becoming practical to automatically convert some printed documents and recorded speech to electronic text as well. Thus, automated systems capable of detecting useful documents are finding widespread application. With even a small number of languages it can be inconvenient to issue the same query repeatedly in every language, so users who are able to read more than one language will likely prefer a multilingual text retrieval system over a collection of monolingual systems. And since reading ability in a language does not always imply fluent writing ability in that language, such users will likely find cross-language text retrieval particularly useful for languages in which they are less confident of their ability to express their information needs effectively. The use of such systems can be also be beneficial if the user is able to read only a single language. For example, when only a small portion of the document collection will ever be examined by the user, performing retrieval before translation can be significantly more economical than performing translation before retrieval. So when the application is sufficiently important to justify the time and effort required for translation, those costs can be minimized if an effective cross-language text retrieval system is available. Even when translation is not available, there are circumstances in which cross-language text retrieval could be useful to a monolingual user. For example, a researcher might find a paper published in an unfamiliar language useful if that paper contains references to works by the same author that are in the researcher's native language.
    Multilingual text retrieval can be defined as selection of useful documents from collections that may contain several languages (English, French, Chinese, etc.). This formulation allows for the possibility that individual documents might contain more than one language, a common occurrence in some applications. Both cross-language and within-language retrieval are included in this formulation, but it is the cross-language aspect of the problem which distinguishes multilingual text retrieval from its well studied monolingual counterpart. At the SIGIR 96 workshop on "Cross-Linguistic Information Retrieval" the participants discussed the proliferation of terminology being used to describe the field and settled on "Cross-Language" as the best single description of the salient aspect of the problem. "Multilingual" was felt to be too broad, since that term has also been used to describe systems able to perform within-language retrieval in more than one language but that lack any cross-language capability. "Cross-lingual" and "cross-linguistic" were felt to be equally good descriptions of the field, but "crosslanguage" was selected as the preferred term in the interest of standardization. Unfortunately, at about the same time the U.S. Defense Advanced Research Projects Agency (DARPA) introduced "translingual" as their preferred term, so we are still some distance from reaching consensus on this matter.
    I will not attempt to draw a sharp distinction between retrieval and filtering in this survey. Although my own work on adaptive cross-language text filtering has led me to make this distinction fairly carefully in other presentations (c.f., (Oard 1997b)), such an proach does little to help understand the fundamental techniques which have been applied or the results that have been obtained in this case. Since it is still common to view filtering (detection of useful documents in dynamic document streams) as a kind of retrieval, will simply adopt that perspective here.
    Theme
    Semantisches Umfeld in Indexierung u. Retrieval
  12. Fowler, R.H.; Wilson, B.A.; Fowler, W.A.L.: Information navigator : an information system using associative networks for display and retrieval (1992) 0.01
    0.007689334 = product of:
      0.023068001 = sum of:
        0.023068001 = product of:
          0.069204 = sum of:
            0.069204 = weight(_text_:retrieval in 919) [ClassicSimilarity], result of:
              0.069204 = score(doc=919,freq=10.0), product of:
                0.15433937 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.051022716 = queryNorm
                0.44838852 = fieldWeight in 919, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.046875 = fieldNorm(doc=919)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Abstract
    Document retrieval is a highly interactive process dealing with large amounts of information. Visual representations can provide both a means for managing the complexity of large information structures and an interface style well suited to interactive manipulation. The system we have designed utilizes visually displayed graphic structures and a direct manipulation interface style to supply an integrated environment for retrieval. A common visually displayed network structure is used for query, document content, and term relations. A query can be modified through direct manipulation of its visual form by incorporating terms from any other information structure the system displays. An associative thesaurus of terms and an inter-document network provide information about a document collection that can complement other retrieval aids. Visualization of these large data structures makes use of fisheye views and overview diagrams to help overcome some of the inherent difficulties of orientation and navigation in large information structures.
    Theme
    Semantisches Umfeld in Indexierung u. Retrieval
  13. Dolin, R.; Agrawal, D.; El Abbadi, A.; Pearlman, J.: Using automated classification for summarizing and selecting heterogeneous information sources (1998) 0.00
    0.0048631616 = product of:
      0.014589485 = sum of:
        0.014589485 = product of:
          0.043768454 = sum of:
            0.043768454 = weight(_text_:retrieval in 316) [ClassicSimilarity], result of:
              0.043768454 = score(doc=316,freq=4.0), product of:
                0.15433937 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.051022716 = queryNorm
                0.2835858 = fieldWeight in 316, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.046875 = fieldNorm(doc=316)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Abstract
    Information retrieval over the Internet increasingly requires the filtering of thousands of heterogeneous information sources. Important sources of information include not only traditional databases with structured data and queries, but also increasing numbers of non-traditional, semi- or unstructured collections such as Web sites, FTP archives, etc. As the number and variability of sources increases, new ways of automatically summarizing, discovering, and selecting collections relevant to a user's query are needed. One such method involves the use of classification schemes, such as the Library of Congress Classification (LCC) [10], within which a collection may be represented based on its content, irrespective of the structure of the actual data or documents. For such a system to be useful in a large-scale distributed environment, it must be easy to use for both collection managers and users. As a result, it must be possible to classify documents automatically within a classification scheme. Furthermore, there must be a straightforward and intuitive interface with which the user may use the scheme to assist in information retrieval (IR).
  14. Chowdhury, A.; Mccabe, M.C.: Improving information retrieval systems using part of speech tagging (1993) 0.00
    0.0048631616 = product of:
      0.014589485 = sum of:
        0.014589485 = product of:
          0.043768454 = sum of:
            0.043768454 = weight(_text_:retrieval in 1061) [ClassicSimilarity], result of:
              0.043768454 = score(doc=1061,freq=4.0), product of:
                0.15433937 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.051022716 = queryNorm
                0.2835858 = fieldWeight in 1061, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1061)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Abstract
    The object of Information Retrieval is to retrieve all relevant documents for a user query and only those relevant documents. Much research has focused on achieving this objective with little regard for storage overhead or performance. In the paper we evaluate the use of Part of Speech Tagging to improve, the index storage overhead and general speed of the system with only a minimal reduction to precision recall measurements. We tagged 500Mbs of the Los Angeles Times 1990 and 1989 document collection provided by TREC for parts of speech. We then experimented to find the most relevant part of speech to index. We show that 90% of precision recall is achieved with 40% of the document collections terms. We also show that this is a improvement in overhead with only a 1% reduction in precision recall.
  15. Peters, C.; Picchi, E.: Across languages, across cultures : issues in multilinguality and digital libraries (1997) 0.00
    0.004585033 = product of:
      0.013755098 = sum of:
        0.013755098 = product of:
          0.041265294 = sum of:
            0.041265294 = weight(_text_:retrieval in 1233) [ClassicSimilarity], result of:
              0.041265294 = score(doc=1233,freq=2.0), product of:
                0.15433937 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.051022716 = queryNorm
                0.26736724 = fieldWeight in 1233, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1233)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Abstract
    With the recent rapid diffusion over the international computer networks of world-wide distributed document bases, the question of multilingual access and multilingual information retrieval is becoming increasingly relevant. We briefly discuss just some of the issues that must be addressed in order to implement a multilingual interface for a Digital Library system and describe our own approach to this problem.
  16. Shneiderman, B.; Byrd, D.; Croft, W.B.: Clarifying search : a user-interface framework for text searches (1997) 0.00
    0.004585033 = product of:
      0.013755098 = sum of:
        0.013755098 = product of:
          0.041265294 = sum of:
            0.041265294 = weight(_text_:retrieval in 1258) [ClassicSimilarity], result of:
              0.041265294 = score(doc=1258,freq=2.0), product of:
                0.15433937 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.051022716 = queryNorm
                0.26736724 = fieldWeight in 1258, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1258)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Footnote
    Vgl.: http://dlib.ukoln.ac.uk/dlib/january97/retrieval/01shneiderman.html.
  17. Oard, D.W.: Serving users in many languages : cross-language information retrieval for digital libraries (1997) 0.00
    0.004052635 = product of:
      0.012157904 = sum of:
        0.012157904 = product of:
          0.03647371 = sum of:
            0.03647371 = weight(_text_:retrieval in 1261) [ClassicSimilarity], result of:
              0.03647371 = score(doc=1261,freq=4.0), product of:
                0.15433937 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.051022716 = queryNorm
                0.23632148 = fieldWeight in 1261, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1261)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Abstract
    We are rapidly constructing an extensive network infrastructure for moving information across national boundaries, but much remains to be done before linguistic barriers can be surmounted as effectively as geographic ones. Users seeking information from a digital library could benefit from the ability to query large collections once using a single language, even when more than one language is present in the collection. If the information they locate is not available in a language that they can read, some form of translation will be needed. At present, multilingual thesauri such as EUROVOC help to address this challenge by facilitating controlled vocabulary search using terms from several languages, and services such as INSPEC produce English abstracts for documents in other languages. On the other hand, support for free text searching across languages is not yet widely deployed, and fully automatic machine translation is presently neither sufficiently fast nor sufficiently accurate to adequately support interactive cross-language information seeking. An active and rapidly growing research community has coalesced around these and other related issues, applying techniques drawn from several fields - notably information retrieval and natural language processing - to provide access to large multilingual collections.
  18. Chen, H.: Semantic research for digital libraries (1999) 0.00
    0.0034387745 = product of:
      0.0103163235 = sum of:
        0.0103163235 = product of:
          0.03094897 = sum of:
            0.03094897 = weight(_text_:retrieval in 1247) [ClassicSimilarity], result of:
              0.03094897 = score(doc=1247,freq=2.0), product of:
                0.15433937 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.051022716 = queryNorm
                0.20052543 = fieldWeight in 1247, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1247)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Abstract
    In this era of the Internet and distributed, multimedia computing, new and emerging classes of information systems applications have swept into the lives of office workers and people in general. From digital libraries, multimedia systems, geographic information systems, and collaborative computing to electronic commerce, virtual reality, and electronic video arts and games, these applications have created tremendous opportunities for information and computer science researchers and practitioners. As applications become more pervasive, pressing, and diverse, several well-known information retrieval (IR) problems have become even more urgent. Information overload, a result of the ease of information creation and transmission via the Internet and WWW, has become more troublesome (e.g., even stockbrokers and elementary school students, heavily exposed to various WWW search engines, are versed in such IR terminology as recall and precision). Significant variations in database formats and structures, the richness of information media (text, audio, and video), and an abundance of multilingual information content also have created severe information interoperability problems -- structural interoperability, media interoperability, and multilingual interoperability.
  19. Plotkin, R.C.; Schwartz, M.S.: Data modeling for news clip archive : a prototype solution (1997) 0.00
    0.0034387745 = product of:
      0.0103163235 = sum of:
        0.0103163235 = product of:
          0.03094897 = sum of:
            0.03094897 = weight(_text_:retrieval in 1259) [ClassicSimilarity], result of:
              0.03094897 = score(doc=1259,freq=2.0), product of:
                0.15433937 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.051022716 = queryNorm
                0.20052543 = fieldWeight in 1259, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1259)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Abstract
    Film, videotape and multimedia archive systems must address the issues of editing, authoring and searching at the media (i.e. tape) or sub media (i.e. scene) level in addition to the traditional inventory management capabilities associated with the physical media. This paper describes a prototype of a database design for the storage, search and retrieval of multimedia and its related information. It also provides a process by which legacy data can be imported to this schema. The Continuous Media Index, or Comix system is the name of the prototype. An implementation of such a digital library solution incorporates multimedia objects, hierarchical relationships and timecode in addition to traditional attribute data. Present video and multimedia archive systems are easily migrated to this architecture. Comix was implemented for a videotape archiving system. It was written for, and implemented using IBM Digital Library version 1.0. A derivative of Comix is currently in development for customer specific applications. Principles of the Comix design as well as the importation methods are not specific to the underlying systems used.
  20. Landauer, T.K.; Foltz, P.W.; Laham, D.: ¬An introduction to Latent Semantic Analysis (1998) 0.00
    0.0034387745 = product of:
      0.0103163235 = sum of:
        0.0103163235 = product of:
          0.03094897 = sum of:
            0.03094897 = weight(_text_:retrieval in 1162) [ClassicSimilarity], result of:
              0.03094897 = score(doc=1162,freq=2.0), product of:
                0.15433937 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.051022716 = queryNorm
                0.20052543 = fieldWeight in 1162, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1162)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Theme
    Semantisches Umfeld in Indexierung u. Retrieval