Search (202 results, page 2 of 11)

  • × type_ss:"a"
  • × type_ss:"el"
  • × year_i:[2000 TO 2010}
  1. Weibel, S.L.: Border crossings : reflections on a decade of metadata consensus building (2005) 0.00
    0.0030491136 = product of:
      0.006098227 = sum of:
        0.006098227 = product of:
          0.012196454 = sum of:
            0.012196454 = weight(_text_:a in 1187) [ClassicSimilarity], result of:
              0.012196454 = score(doc=1187,freq=26.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.22966442 = fieldWeight in 1187, product of:
                  5.0990195 = tf(freq=26.0), with freq of:
                    26.0 = termFreq=26.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1187)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In June of this year, I performed my final official duties as part of the Dublin Core Metadata Initiative management team. It is a happy irony to affix a seal on that service in this journal, as both D-Lib Magazine and the Dublin Core celebrate their tenth anniversaries. This essay is a personal reflection on some of the achievements and lessons of that decade. The OCLC-NCSA Metadata Workshop took place in March of 1995, and as we tried to understand what it meant and who would care, D-Lib magazine came into being and offered a natural venue for sharing our work. I recall a certain skepticism when Bill Arms said "We want D-Lib to be the first place people look for the latest developments in digital library research." These were the early days in the evolution of electronic publishing, and the goal was ambitious. By any measure, a decade of high-quality electronic publishing is an auspicious accomplishment, and D-Lib (and its host, CNRI) deserve congratulations for having achieved their goal. I am grateful to have been a contributor. That first DC workshop led to further workshops, a community, a variety of standards in several countries, an ISO standard, a conference series, and an international consortium. Looking back on this evolution is both satisfying and wistful. While I am pleased that the achievements are substantial, the unmet challenges also provide a rich till in which to cultivate insights on the development of digital infrastructure.
    Type
    a
  2. Coyle, K.: ¬The virtual union catalog : a comparative study (2000) 0.00
    0.0030444188 = product of:
      0.0060888375 = sum of:
        0.0060888375 = product of:
          0.012177675 = sum of:
            0.012177675 = weight(_text_:a in 1230) [ClassicSimilarity], result of:
              0.012177675 = score(doc=1230,freq=18.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.22931081 = fieldWeight in 1230, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1230)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    A Virtual union catalog is a possible alternative to the centralized database of distributed resources found in many library systems. Such a catalog would not be maintained in a single location but would be created in real time by searching each local campus or affiliate library's catalog through the Z39.50 protocol. This would eliminate the redundancy of record storage as well as the expense of loading and maintaining access to the central catalog. This article describes a test implementation of a virtual union catalog for the University of California system. It describes some of the differences between the virtual catalog and the existing, centralized union catalog (MELVYL). The research described in the paper suggests enhancements that must be made if the virtual union catalog is to become a reasonable service alternative to the MELVYL® catalog.
    Type
    a
  3. Apps, A.; MacIntyre, R.; Heery, R.; Patel, M.; Salokhe, G.: Zetoc : a Dublin Core Based Current Awareness Service (2002) 0.00
    0.0029294936 = product of:
      0.005858987 = sum of:
        0.005858987 = product of:
          0.011717974 = sum of:
            0.011717974 = weight(_text_:a in 1280) [ClassicSimilarity], result of:
              0.011717974 = score(doc=1280,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.22065444 = fieldWeight in 1280, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.078125 = fieldNorm(doc=1280)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  4. Veen, T. van; Oldroyd, B.: Search and retrieval in The European Library : a new approach (2004) 0.00
    0.0029294936 = product of:
      0.005858987 = sum of:
        0.005858987 = product of:
          0.011717974 = sum of:
            0.011717974 = weight(_text_:a in 1164) [ClassicSimilarity], result of:
              0.011717974 = score(doc=1164,freq=24.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.22065444 = fieldWeight in 1164, product of:
                  4.8989797 = tf(freq=24.0), with freq of:
                    24.0 = termFreq=24.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1164)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The objective of the European Library (TEL) project [TEL] was to set up a co-operative framework and specify a system for integrated access to the major collections of the European national libraries. This has been achieved by successfully applying a new approach for search and retrieval via URLs (SRU) [ZiNG] combined with a new metadata paradigm. One aim of the TEL approach is to have a low barrier of entry into TEL, and this has driven our choice for the technical solution described here. The solution comprises portal and client functionality running completely in the browser, resulting in a low implementation barrier and maximum scalability, as well as giving users control over the search interface and what collections to search. In this article we will describe, step by step, the development of both the search and retrieval architecture and the metadata infrastructure in the European Library project. We will show that SRU is a good alternative to the Z39.50 protocol and can be implemented without losing investments in current Z39.50 implementations. The metadata model being used by TEL is a Dublin Core Application Profile, and we have taken into account that functional requirements will change over time and therefore the metadata model will need to be able to evolve in a controlled way. We make this possible by means of a central metadata registry containing all characteristics of the metadata in TEL. Finally, we provide two scenarios to show how the TEL concept can be developed and extended, with applications capable of increasing their functionality by "learning" new metadata or protocol options.
    Type
    a
  5. O'Donnell, J.J.: LC21 - hopes and cautions for the Library of Congress (2000) 0.00
    0.0029000505 = product of:
      0.005800101 = sum of:
        0.005800101 = product of:
          0.011600202 = sum of:
            0.011600202 = weight(_text_:a in 3782) [ClassicSimilarity], result of:
              0.011600202 = score(doc=3782,freq=12.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.21843673 = fieldWeight in 3782, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3782)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    It is the Library of Congress's fate to be a symbol as well as a library. It shares with the ancient library of Alexandria the curse of standing for an ill-conceived acme of library perfection -- total comprehensiveness. But if Borges's Funes the Memorious discovered that to remember everything will drive a person mad, so a library knows that to collect everything is madness as well. The Library of Congress (LC) has never succumbed to that madness. Instead, its inspired leaders for two centuries have built a working collection that dwarfs all others in size but remains selective, rich, and accessible. That is no small achievement.
    Type
    a
  6. Godby, C.J.; Young, J.A.; Childress, E.: ¬A repository of metadata crosswalks (2004) 0.00
    0.0029000505 = product of:
      0.005800101 = sum of:
        0.005800101 = product of:
          0.011600202 = sum of:
            0.011600202 = weight(_text_:a in 1155) [ClassicSimilarity], result of:
              0.011600202 = score(doc=1155,freq=12.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.21843673 = fieldWeight in 1155, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1155)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This paper proposes a model for metadata crosswalks that associates three pieces of information: the crosswalk, the source metadata standard, and the target metadata standard, each of which may have a machine-readable encoding and human-readable description. The crosswalks are encoded as METS records that are made available to a repository for processing by search engines, OAI harvesters, and custom-designed Web services. The METS object brings together all of the information required to access and interpret crosswalks and represents a significant improvement over previously available formats. But it raises questions about how best to describe these complex objects and exposes gaps that must eventually be filled in by the digital library community.
    Type
    a
  7. Harzing, A.-W.: Comparing the Google Scholar h-index with the ISI Journal Impact Factor (2008) 0.00
    0.0029000505 = product of:
      0.005800101 = sum of:
        0.005800101 = product of:
          0.011600202 = sum of:
            0.011600202 = weight(_text_:a in 855) [ClassicSimilarity], result of:
              0.011600202 = score(doc=855,freq=12.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.21843673 = fieldWeight in 855, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=855)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Publication in academic journals is a key criterion for appointment, tenure and promotion in universities. Many universities weigh publications according to the quality or impact of the journal. Traditionally, journal quality has been assessed through the ISI Journal Impact Factor (JIF). This paper proposes an alternative metric - Hirsch's h-index - and data source - Google Scholar - to assess journal impact. Using a systematic comparison between the Google Scholar h-index and the ISI JIF for a sample of 838 journals in Economics & Business, we argue that the former provides a more accurate and comprehensive measure of journal impact.
    Type
    a
  8. Borlund, P.: ¬The IIR evaluation model : a framework for evaluation of interactive information retrieval systems (2003) 0.00
    0.0028703054 = product of:
      0.005740611 = sum of:
        0.005740611 = product of:
          0.011481222 = sum of:
            0.011481222 = weight(_text_:a in 922) [ClassicSimilarity], result of:
              0.011481222 = score(doc=922,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.2161963 = fieldWeight in 922, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.09375 = fieldNorm(doc=922)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  9. Kunze, J.: ¬A Metadata Kernel for Electronic Permanence (2002) 0.00
    0.0028703054 = product of:
      0.005740611 = sum of:
        0.005740611 = product of:
          0.011481222 = sum of:
            0.011481222 = weight(_text_:a in 1107) [ClassicSimilarity], result of:
              0.011481222 = score(doc=1107,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.2161963 = fieldWeight in 1107, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.09375 = fieldNorm(doc=1107)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  10. Soergel, D.; Lauser, B.; Liang, A.; Fisseha, F.; Keizer, J.; Katz, S.: Reengineering thesauri for new applications : the AGROVOC example (2004) 0.00
    0.0028703054 = product of:
      0.005740611 = sum of:
        0.005740611 = product of:
          0.011481222 = sum of:
            0.011481222 = weight(_text_:a in 2347) [ClassicSimilarity], result of:
              0.011481222 = score(doc=2347,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.2161963 = fieldWeight in 2347, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.09375 = fieldNorm(doc=2347)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  11. Notess, M.: Three looks at users : a comparison of methods for studying digital library use (2004) 0.00
    0.0028703054 = product of:
      0.005740611 = sum of:
        0.005740611 = product of:
          0.011481222 = sum of:
            0.011481222 = weight(_text_:a in 4167) [ClassicSimilarity], result of:
              0.011481222 = score(doc=4167,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.2161963 = fieldWeight in 4167, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.09375 = fieldNorm(doc=4167)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  12. Shechtman, N.; Chung, M.; Roschelle, J.: Supporting member collaboration in the Math Tools digital library : a formative user study (2004) 0.00
    0.0028703054 = product of:
      0.005740611 = sum of:
        0.005740611 = product of:
          0.011481222 = sum of:
            0.011481222 = weight(_text_:a in 1163) [ClassicSimilarity], result of:
              0.011481222 = score(doc=1163,freq=16.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.2161963 = fieldWeight in 1163, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1163)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In this paper, we discuss a user study done at the formative stage of development of a Math Tools developers' community. The Math Tools digital library, which aims to collect software tools to support K-12 and university mathematics instruction, has two synergistic purposes. One is to support federated search and the other is to create a community of practice in which developers and users can work together. While much research has explored the technical problem of federated search, there has been little investigation into how to grow a creative, working community around a digital library. To this end, we surveyed and interviewed members of the Math Tools community in order to elicit concerns and priorities. These data led to rich descriptions of the teachers, developers, and researchers who comprise this community. Insights from these descriptions were then used to inform the creation of a set of metaphors and design principles that the Math Tools team could use in their continuing design work.
    Type
    a
  13. Atkins, H.; Lyons, C.; Ratner, H.; Risher, C.; Shillum, C.; Sidman, D.; Stevens, A.: Reference linking with DOIs : a case study (2000) 0.00
    0.0028703054 = product of:
      0.005740611 = sum of:
        0.005740611 = product of:
          0.011481222 = sum of:
            0.011481222 = weight(_text_:a in 1229) [ClassicSimilarity], result of:
              0.011481222 = score(doc=1229,freq=16.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.2161963 = fieldWeight in 1229, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1229)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    DOI-X is a prototype metadata database designed to support DOI lookups. The prototype is intended to address the integration of metadata registration and maintenance with basic DOI registration and maintenance, enabling publishers to use a single mechanism and a single quality-assurance process to register both DOIs and their associated metadata. It also contains the lookup mechanisms necessary to access the journal article metadata, both on a single-item lookup basis and on a batch basis, such as would facilitate reference linking. The prototype database was introduced and demonstrated to attendees at the STM International Meeting and the Frankfurt Book Fair in October 1999. This paper discusses the background for the creation of DOI-X and its salient features.
    Type
    a
  14. Cohen, S.; Fereira, J.; Horne, A.; Kibbee, B.; Mistlebauer, H.; Smith, A.: MyLibrary : personalized electronic services in the Cornell University Library (2000) 0.00
    0.0028703054 = product of:
      0.005740611 = sum of:
        0.005740611 = product of:
          0.011481222 = sum of:
            0.011481222 = weight(_text_:a in 1232) [ClassicSimilarity], result of:
              0.011481222 = score(doc=1232,freq=36.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.2161963 = fieldWeight in 1232, product of:
                  6.0 = tf(freq=36.0), with freq of:
                    36.0 = termFreq=36.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1232)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Library users who are Web users expect customization and interactivity. MyLibrary is a Cornell University Library initiative to provide numerous personalized library services to Cornell University students, faculty, and staff. Currently, it consists of MyLinks, a tool for collecting and organizing resources for private use by a patron, and MyUpdates, a tool to help scholars stay informed of new resources provided by the library. This article provides an overview of the MyLibrary project, explains the rationale for the development of the service in the library, briefly discusses the hardware and software used for the service, and suggests some of the directions for future developments of the MyLibrary system. MyYahoo!, MyCNN, MyBookmarks, MyThis and MyThat. Internet users have demanded a personal face to the World Wide Web, and Web portals and information providers have responded. Why not MyLibrary? The Library and Information Technology Association (LITA) has defined MyLibrary-like services as the number one trend "worth keeping an eye on". "Library users who are Web users, a growing group," the experts agree, "expect customization, interactivity, and customer support. Approaches that are library-focused instead of user-focused will be increasingly irrelevant." In response to the needs of web-savvy patrons, the Cornell University Library (CUL) implemented a MyLibrary service this year, making finding and using library resources easier than ever. MyLibrary is an "umbrella" service for two new products: MyLinks and MyUpdates. Other products are in development. MyLibrary's MyLinks is a tool for collecting and organizing resources for private use by a patron. These resources may or may not be "official" Cornell University Library resources. Our patrons best understand this service as a "traveling set of bookmarks". Most patrons of the library use a variety of machines to access Internet resources. For example, you may have a computer at home and one at work. Why should you create your bookmarks twice, or carry around a diskette containing your bookmarks? Students who rely on lab computers never know which machine they will use next. With MyLinks, a patron's favorite sites are just a click away from any machine.
    Type
    a
  15. Ding, L.; Finin, T.; Joshi, A.; Peng, Y.; Cost, R.S.; Sachs, J.; Pan, R.; Reddivari, P.; Doshi, V.: Swoogle : a Semantic Web search and metadata engine (2004) 0.00
    0.0028703054 = product of:
      0.005740611 = sum of:
        0.005740611 = product of:
          0.011481222 = sum of:
            0.011481222 = weight(_text_:a in 4704) [ClassicSimilarity], result of:
              0.011481222 = score(doc=4704,freq=16.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.2161963 = fieldWeight in 4704, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4704)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Swoogle is a crawler-based indexing and retrieval system for the Semantic Web, i.e., for Web documents in RDF or OWL. It extracts metadata for each discovered document, and computes relations between documents. Discovered documents are also indexed by an information retrieval system which can use either character N-Gram or URIrefs as keywords to find relevant documents and to compute the similarity among a set of documents. One of the interesting properties we compute is rank, a measure of the importance of a Semantic Web document.
    Content
    Vgl. unter: http://www.dblab.ntua.gr/~bikakis/LD/5.pdf Vgl. auch: http://swoogle.umbc.edu/. Vgl. auch: http://ebiquity.umbc.edu/paper/html/id/183/. Vgl. auch: Radhakrishnan, A.: Swoogle : An Engine for the Semantic Web unter: http://www.searchenginejournal.com/swoogle-an-engine-for-the-semantic-web/5469/.
    Type
    a
  16. Prieto-Díaz, R.: ¬A faceted approach to building ontologies (2002) 0.00
    0.0028703054 = product of:
      0.005740611 = sum of:
        0.005740611 = product of:
          0.011481222 = sum of:
            0.011481222 = weight(_text_:a in 2259) [ClassicSimilarity], result of:
              0.011481222 = score(doc=2259,freq=16.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.2161963 = fieldWeight in 2259, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2259)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    An ontology is "an explicit conceptualization of a domain of discourse, and thus provides a shared and common understanding of the domain." We have been producing ontologies for millennia to understand and explain our rationale and environment. From Plato's philosophical framework to modern day classification systems, ontologies are, in most cases, the product of extensive analysis and categorization. Only recently has the process of building ontologies become a research topic of interest. Today, ontologies are built very much ad-hoc. A terminology is first developed providing a controlled vocabulary for the subject area or domain of interest, then it is organized into a taxonomy where key concepts are identified, and finally these concepts are defined and related to create an ontology. The intent of this paper is to show that domain analysis methods can be used for building ontologies. Domain analysis aims at generic models that represent groups of similar systems within an application domain. In this sense, it deals with categorization of common objects and operations, with clear, unambiguous definitions of them and with defining their relationships.
    Type
    a
  17. Combs, A.; Krippner, S.: Collective consciousness and the social brain (2008) 0.00
    0.0028703054 = product of:
      0.005740611 = sum of:
        0.005740611 = product of:
          0.011481222 = sum of:
            0.011481222 = weight(_text_:a in 5622) [ClassicSimilarity], result of:
              0.011481222 = score(doc=5622,freq=16.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.2161963 = fieldWeight in 5622, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5622)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This paper discusses supportive neurological and social evidence for 'collective consciousness', here understood as a shared sense of being together with others in a single or unified experience. Mirror neurons in the premotor and posterior parietal cortices respond to the intentions as well as the actions of other individuals. There are also mirror neurons in the anterior insula and anterior cingulate cortices which have been implicated in empathy. Many authors have considered the likely role of such mirror systems in the development of uniquely human aspects of sociality including language. Though not without criticism, Menant has made the case that mirror-neuron assisted exchanges aided the original advent of self-consciousness and intersubjectivity. Combining these ideas with social mirror theory it is not difficult to imagine the creation of similar dynamical patterns in the emotional and even cognitive neuronal activity of individuals in human groups, creating a feeling in which the participating members experience a unified sense of consciousness. Such instances pose a kind of 'binding problem' in which participating individuals exhibit a degree of 'entanglement'.
    Type
    a
  18. Bird, S.; Dale, R.; Dorr, B.; Gibson, B.; Joseph, M.; Kan, M.-Y.; Lee, D.; Powley, B.; Radev, D.; Tan, Y.F.: ¬The ACL Anthology Reference Corpus : a reference dataset for bibliographic research in computational linguistics (2008) 0.00
    0.0027894354 = product of:
      0.005578871 = sum of:
        0.005578871 = product of:
          0.011157742 = sum of:
            0.011157742 = weight(_text_:a in 2804) [ClassicSimilarity], result of:
              0.011157742 = score(doc=2804,freq=34.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.21010503 = fieldWeight in 2804, product of:
                  5.8309517 = tf(freq=34.0), with freq of:
                    34.0 = termFreq=34.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2804)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The ACL Anthology is a digital archive of conference and journal papers in natural language processing and computational linguistics. Its primary purpose is to serve as a reference repository of research results, but we believe that it can also be an object of study and a platform for research in its own right. We describe an enriched and standardized reference corpus derived from the ACL Anthology that can be used for research in scholarly document processing. This corpus, which we call the ACL Anthology Reference Corpus (ACL ARC), brings together the recent activities of a number of research groups around the world. Our goal is to make the corpus widely available, and to encourage other researchers to use it as a standard testbed for experiments in both bibliographic and bibliometric research.
    Content
    Vgl. auch: Automatic Term Recognition (ATR) is a research task that deals with the identification of domain-specific terms. Terms, in simple words, are textual realization of significant concepts in an expertise domain. Additionally, domain-specific terms may be classified into a number of categories, in which each category represents a significant concept. A term classification task is often defined on top of an ATR procedure to perform such categorization. For instance, in the biomedical domain, terms can be classified as drugs, proteins, and genes. This is a reference dataset for terminology extraction and classification research in computational linguistics. It is a set of manually annotated terms in English language that are extracted from the ACL Anthology Reference Corpus (ACL ARC). The ACL ARC is a canonicalised and frozen subset of scientific publications in the domain of Human Language Technologies (HLT). It consists of 10,921 articles from 1965 to 2006. The dataset, called ACL RD-TEC, is comprised of more than 69,000 candidate terms that are manually annotated as valid and invalid terms. Furthermore, valid terms are classified as technology and non-technology terms. Technology terms refer to a method, process, or in general a technological concept in the domain of HLT, e.g. machine translation, word sense disambiguation, and language modelling. On the other hand, non-technology terms refer to important concepts other than technological; examples of such terms in the domain of HLT are multilingual lexicon, corpora, word sense, and language model. The dataset is created to serve as a gold standard for the comparison of the algorithms of term recognition and classification. [http://catalog.elra.info/product_info.php?products_id=1236].
    Type
    a
  19. Paskin, N.: DOI: a 2003 progress report (2003) 0.00
    0.002776587 = product of:
      0.005553174 = sum of:
        0.005553174 = product of:
          0.011106348 = sum of:
            0.011106348 = weight(_text_:a in 1203) [ClassicSimilarity], result of:
              0.011106348 = score(doc=1203,freq=44.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.20913726 = fieldWeight in 1203, product of:
                  6.6332498 = tf(freq=44.0), with freq of:
                    44.0 = termFreq=44.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=1203)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The International DOI Foundation (IDF) recently published the third edition of its DOI Handbook, which sets the scene for DOI's expansion into much wider applications. Edition 3 is not simply an updated user guide. A great deal has happened in the underlying technologies and in the practical deployment and development of DOIs (Digital Object Identifiers) since the last edition was published a year ago. Much of the program of technical work foreseen at the inception of DOIs has now been completed. The initial simple implementation of DOI as a persistent name linked to redirection continues to grow, with approaching ten million DOIs assigned from several hundred organisations through a number of Registration Agencies in USA, Europe, and Australasia, supporting large scale business uses. Implementations of more sophisticated applications (offering associated services) have been developing well but on a smaller scale: a framework for building these has been completed as part of the latest release and promises to stimulate a new wave of growth. From its original starting point in text publishing, there has been gradual embrace by a number of communities: these include national libraries (a consortium of national libraries recently joined the IDF); government documentation (with the appointment of TSO The Stationery Office in the UK as a DOI agency and the announced intention of the EC Office of Publications to use DOIs); non-English language markets (France, Germany, Spain, Italy, Korea). However implementations in non-text sectors have been far slower to develop, though several are now under discussion. The DOI community can point to several significant achievements over the past few years: * A practical successful open implementation of naming objects, treating content as information objects, not simply packets of bits; * The IDF's role in co-sponsoring, championing, and now implementing the <indecs>T framework as a semantic tool for structured metadata - an essential step for treating content as information in Semantic-Web-like applications; * A template for building advanced applications, connecting resolution and metadata technologies, and offering hooks to web services and similar applications; * The development of a policy framework that allows multiple communities autonomy; * The practical implementation of DOIs with emerging related standards such as the OpenURL framework in contextual linking.
    A number of issues remain to be solved. In the main these are no longer technical in nature, but more concerned with perception and outreach to other communities. They include: correctly positioning the DOI in the standards community as a practical implementation (based on standards, but more than standards); offering the benefits of DOI to other communities working in related identifier development whilst allowing them to remain largely autonomous; demonstrating how DOIs can complement, rather than compete with, other activities; and ensuring that a sustainable long-term infrastructure for any application (commercial and non-commercial alike) is in place. Persistent, actionable identifiers with a fully managed sustainable infrastructure are not appropriate for every activity; but they are suitable for many, and where they are used, the key to providing a successful and widely adopted system is encouraging economy of scale (and so, where possible, convergence with other related efforts), flexibility of use, and a low barrier to use. DOI is well on the way to providing this, but not yet guaranteed of success without the further effort that is now being applied.
    Type
    a
  20. Kelly, B.: ¬The XHTML interview (2000) 0.00
    0.00270615 = product of:
      0.0054123 = sum of:
        0.0054123 = product of:
          0.0108246 = sum of:
            0.0108246 = weight(_text_:a in 4183) [ClassicSimilarity], result of:
              0.0108246 = score(doc=4183,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.20383182 = fieldWeight in 4183, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.125 = fieldNorm(doc=4183)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a

Languages

  • e 178
  • d 20
  • i 1
  • More… Less…