Search (85 results, page 1 of 5)

  • × type_ss:"a"
  • × type_ss:"el"
  • × year_i:[2000 TO 2010}
  1. Atran, S.; Medin, D.L.; Ross, N.: Evolution and devolution of knowledge : a tale of two biologies (2004) 0.05
    0.053214032 = product of:
      0.07095204 = sum of:
        0.023211608 = weight(_text_:science in 479) [ClassicSimilarity], result of:
          0.023211608 = score(doc=479,freq=2.0), product of:
            0.1329271 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.050463587 = queryNorm
            0.17461908 = fieldWeight in 479, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.046875 = fieldNorm(doc=479)
        0.027229078 = weight(_text_:research in 479) [ClassicSimilarity], result of:
          0.027229078 = score(doc=479,freq=2.0), product of:
            0.14397179 = queryWeight, product of:
              2.8529835 = idf(docFreq=6931, maxDocs=44218)
              0.050463587 = queryNorm
            0.18912788 = fieldWeight in 479, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.8529835 = idf(docFreq=6931, maxDocs=44218)
              0.046875 = fieldNorm(doc=479)
        0.020511357 = product of:
          0.041022714 = sum of:
            0.041022714 = weight(_text_:22 in 479) [ClassicSimilarity], result of:
              0.041022714 = score(doc=479,freq=2.0), product of:
                0.17671488 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050463587 = queryNorm
                0.23214069 = fieldWeight in 479, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=479)
          0.5 = coord(1/2)
      0.75 = coord(3/4)
    
    Abstract
    Anthropological inquiry suggests that all societies classify animals and plants in similar ways. Paradoxically, in the same cultures that have seen large advances in biological science, citizenry's practical knowledge of nature has dramatically diminished. Here we describe historical, cross-cultural and developmental research on how people ordinarily conceptualize organic nature (folkbiology), concentrating on cognitive consequences associated with knowledge devolution. We show that results on psychological studies of categorization and reasoning from "standard populations" fail to generalize to humanity at large. Usual populations (Euro-American college students) have impoverished experience with nature, which yields misleading results about knowledge acquisition and the ontogenetic relationship between folkbiology and folkpsychology. We also show that groups living in the same habitat can manifest strikingly distinct behaviors, cognitions and social relations relative to it. This has novel implications for environmental decision making and management, including commons problems.
    Date
    23. 1.2022 10:22:18
  2. Qin, J.; Paling, S.: Converting a controlled vocabulary into an ontology : the case of GEM (2001) 0.05
    0.047740437 = product of:
      0.095480874 = sum of:
        0.054458156 = weight(_text_:research in 3895) [ClassicSimilarity], result of:
          0.054458156 = score(doc=3895,freq=2.0), product of:
            0.14397179 = queryWeight, product of:
              2.8529835 = idf(docFreq=6931, maxDocs=44218)
              0.050463587 = queryNorm
            0.37825575 = fieldWeight in 3895, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.8529835 = idf(docFreq=6931, maxDocs=44218)
              0.09375 = fieldNorm(doc=3895)
        0.041022714 = product of:
          0.08204543 = sum of:
            0.08204543 = weight(_text_:22 in 3895) [ClassicSimilarity], result of:
              0.08204543 = score(doc=3895,freq=2.0), product of:
                0.17671488 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050463587 = queryNorm
                0.46428138 = fieldWeight in 3895, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=3895)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Date
    24. 8.2005 19:20:22
    Source
    Information Research. 6(2001), no.2
  3. Van der Veer Martens, B.: Do citation systems represent theories of truth? (2001) 0.05
    0.046863765 = product of:
      0.09372753 = sum of:
        0.0453818 = weight(_text_:research in 3925) [ClassicSimilarity], result of:
          0.0453818 = score(doc=3925,freq=2.0), product of:
            0.14397179 = queryWeight, product of:
              2.8529835 = idf(docFreq=6931, maxDocs=44218)
              0.050463587 = queryNorm
            0.31521314 = fieldWeight in 3925, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.8529835 = idf(docFreq=6931, maxDocs=44218)
              0.078125 = fieldNorm(doc=3925)
        0.048345733 = product of:
          0.09669147 = sum of:
            0.09669147 = weight(_text_:22 in 3925) [ClassicSimilarity], result of:
              0.09669147 = score(doc=3925,freq=4.0), product of:
                0.17671488 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050463587 = queryNorm
                0.54716086 = fieldWeight in 3925, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=3925)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Date
    22. 7.2006 15:22:28
    Source
    Information Research. 6(2001), no.2
  4. Brahms, E.: Digital library initiatives of the Deutsche Forschungsgemeinschaft (2001) 0.05
    0.04685612 = product of:
      0.09371224 = sum of:
        0.032826174 = weight(_text_:science in 1190) [ClassicSimilarity], result of:
          0.032826174 = score(doc=1190,freq=4.0), product of:
            0.1329271 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.050463587 = queryNorm
            0.24694869 = fieldWeight in 1190, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.046875 = fieldNorm(doc=1190)
        0.060886066 = weight(_text_:research in 1190) [ClassicSimilarity], result of:
          0.060886066 = score(doc=1190,freq=10.0), product of:
            0.14397179 = queryWeight, product of:
              2.8529835 = idf(docFreq=6931, maxDocs=44218)
              0.050463587 = queryNorm
            0.42290276 = fieldWeight in 1190, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              2.8529835 = idf(docFreq=6931, maxDocs=44218)
              0.046875 = fieldNorm(doc=1190)
      0.5 = coord(2/4)
    
    Abstract
    The Deutsche Forschungsgemeinschaft (DFG) is the central public funding organization for academic research in Germany. It is thus comparable to a research council or a national research foundation. According to its statutes, DFG's mandate is to serve science and the arts in all fields by supporting research projects carried out at universities and public research institutions in Germany, to promote cooperation between researchers, and to forge and support links between German academic science, industry and partners in foreign countries. In the fulfillment of its tasks, the DFG pays special attention to the education and support of young scientists and scholars. DFG's mandate and operations follow the principle of territoriality. This means that its funding activities are restricted, with very few exceptions, to individuals and institutions with permanent addresses in Germany. Fellowships are granted for work in other countries, but most fellowship programs are restricted to German citizens, with a few exceptions for permanent residents of Germany holding foreign passports.
  5. Dobratz, S.; Neuroth, H.: nestor: Network of Expertise in long-term STOrage of digital Resources : a digital preservation initiative for Germany (2004) 0.04
    0.044691153 = product of:
      0.0595882 = sum of:
        0.011605804 = weight(_text_:science in 1195) [ClassicSimilarity], result of:
          0.011605804 = score(doc=1195,freq=2.0), product of:
            0.1329271 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.050463587 = queryNorm
            0.08730954 = fieldWeight in 1195, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0234375 = fieldNorm(doc=1195)
        0.019253865 = weight(_text_:research in 1195) [ClassicSimilarity], result of:
          0.019253865 = score(doc=1195,freq=4.0), product of:
            0.14397179 = queryWeight, product of:
              2.8529835 = idf(docFreq=6931, maxDocs=44218)
              0.050463587 = queryNorm
            0.1337336 = fieldWeight in 1195, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.8529835 = idf(docFreq=6931, maxDocs=44218)
              0.0234375 = fieldNorm(doc=1195)
        0.028728535 = product of:
          0.05745707 = sum of:
            0.05745707 = weight(_text_:network in 1195) [ClassicSimilarity], result of:
              0.05745707 = score(doc=1195,freq=6.0), product of:
                0.22473325 = queryWeight, product of:
                  4.4533744 = idf(docFreq=1398, maxDocs=44218)
                  0.050463587 = queryNorm
                0.25566787 = fieldWeight in 1195, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  4.4533744 = idf(docFreq=1398, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=1195)
          0.5 = coord(1/2)
      0.75 = coord(3/4)
    
    Abstract
    Sponsored by the German Ministry of Education and Research with funding of 800.000 EURO, the German Network of Expertise in long-term storage of digital resources (nestor) began in June 2003 as a cooperative effort of 6 partners representing different players within the field of long-term preservation. The partners include: * The German National Library (Die Deutsche Bibliothek) as the lead institution for the project * The State and University Library of Lower Saxony Göttingen (Staats- und Universitätsbibliothek Göttingen) * The Computer and Media Service and the University Library of Humboldt-University Berlin (Humboldt-Universität zu Berlin) * The Bavarian State Library in Munich (Bayerische Staatsbibliothek) * The Institute for Museum Information in Berlin (Institut für Museumskunde) * General Directorate of the Bavarian State Archives (GDAB) As in other countries, long-term preservation of digital resources has become an important issue in Germany in recent years. Nevertheless, coming to agreement with institutions throughout the country to cooperate on tasks for a long-term preservation effort has taken a great deal of effort. Although there had been considerable attention paid to the preservation of physical media like CD-ROMS, technologies available for the long-term preservation of digital publications like e-books, digital dissertations, websites, etc., are still lacking. Considering the importance of the task within the federal structure of Germany, with the responsibility of each federal state for its science and culture activities, it is obvious that the approach to a successful solution of these issues in Germany must be a cooperative approach. Since 2000, there have been discussions about strategies and techniques for long-term archiving of digital information, particularly within the distributed structure of Germany's library and archival institutions. A key part of all the previous activities was focusing on using existing standards and analyzing the context in which those standards would be applied. One such activity, the Digital Library Forum Planning Project, was done on behalf of the German Ministry of Education and Research in 2002, where the vision of a digital library in 2010 that can meet the changing and increasing needs of users was developed and described in detail, including the infrastructure required and how the digital library would work technically, what it would contain and how it would be organized. The outcome was a strategic plan for certain selected specialist areas, where, amongst other topics, a future call for action for long-term preservation was defined, described and explained against the background of practical experience.
    As follow up, in 2002 the nestor long-term archiving working group provided an initial spark towards planning and organising coordinated activities concerning the long-term preservation and long-term availability of digital documents in Germany. This resulted in a workshop, held 29 - 30 October 2002, where major tasks were discussed. Influenced by the demands and progress of the nestor network, the participants reached agreement to start work on application-oriented projects and to address the following topics: * Overlapping problems o Collection and preservation of digital objects (selection criteria, preservation policy) o Definition of criteria for trusted repositories o Creation of models of cooperation, etc. * Digital objects production process o Analysis of potential conflicts between production and long-term preservation o Documentation of existing document models and recommendations for standards models to be used for long-term preservation o Identification systems for digital objects, etc. * Transfer of digital objects o Object data and metadata o Transfer protocols and interoperability o Handling of different document types, e.g. dynamic publications, etc. * Long-term preservation of digital objects o Design and prototype implementation of depot systems for digital objects (OAIS was chosen to be the best functional model.) o Authenticity o Functional requirements on user interfaces of an depot system o Identification systems for digital objects, etc. At the end of the workshop, participants decided to establish a permanent distributed infrastructure for long-term preservation and long-term accessibility of digital resources in Germany comparable, e.g., to the Digital Preservation Coalition in the UK. The initial phase, nestor, is now being set up by the above-mentioned 3-year funding project.
  6. Mongin, L.; Fu, Y.Y.; Mostafa, J.: Open Archives data Service prototype and automated subject indexing using D-Lib archive content as a testbed (2003) 0.04
    0.03999416 = product of:
      0.07998832 = sum of:
        0.032826174 = weight(_text_:science in 1167) [ClassicSimilarity], result of:
          0.032826174 = score(doc=1167,freq=4.0), product of:
            0.1329271 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.050463587 = queryNorm
            0.24694869 = fieldWeight in 1167, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.046875 = fieldNorm(doc=1167)
        0.04716215 = weight(_text_:research in 1167) [ClassicSimilarity], result of:
          0.04716215 = score(doc=1167,freq=6.0), product of:
            0.14397179 = queryWeight, product of:
              2.8529835 = idf(docFreq=6931, maxDocs=44218)
              0.050463587 = queryNorm
            0.3275791 = fieldWeight in 1167, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.8529835 = idf(docFreq=6931, maxDocs=44218)
              0.046875 = fieldNorm(doc=1167)
      0.5 = coord(2/4)
    
    Abstract
    The Indiana University School of Library and Information Science opened a new research laboratory in January 2003; The Indiana University School of Library and Information Science Information Processing Laboratory [IU IP Lab]. The purpose of the new laboratory is to facilitate collaboration between scientists in the department in the areas of information retrieval (IR) and information visualization (IV) research. The lab has several areas of focus. These include grid and cluster computing, and a standard Java-based software platform to support plug and play research datasets, a selection of standard IR modules and standard IV algorithms. Future development includes software to enable researchers to contribute datasets, IR algorithms, and visualization algorithms into the standard environment. We decided early on to use OAI-PMH as a resource discovery tool because it is consistent with our mission.
  7. Zia, L.L.: Growing a national learning environments and resources network for science, mathematics, engineering, and technology education : current issues and opportunities for the NSDL program (2001) 0.04
    0.038104557 = product of:
      0.07620911 = sum of:
        0.0379044 = weight(_text_:science in 1217) [ClassicSimilarity], result of:
          0.0379044 = score(doc=1217,freq=12.0), product of:
            0.1329271 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.050463587 = queryNorm
            0.28515178 = fieldWeight in 1217, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.03125 = fieldNorm(doc=1217)
        0.038304713 = product of:
          0.076609425 = sum of:
            0.076609425 = weight(_text_:network in 1217) [ClassicSimilarity], result of:
              0.076609425 = score(doc=1217,freq=6.0), product of:
                0.22473325 = queryWeight, product of:
                  4.4533744 = idf(docFreq=1398, maxDocs=44218)
                  0.050463587 = queryNorm
                0.34089047 = fieldWeight in 1217, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  4.4533744 = idf(docFreq=1398, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1217)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    The National Science Foundation's (NSF) National Science, Mathematics, Engineering, and Technology Education Digital Library (NSDL) program seeks to create, develop, and sustain a national digital library supporting science, mathematics, engineering, and technology (SMET) education at all levels -- preK-12, undergraduate, graduate, and life-long learning. The resulting virtual institution is expected to catalyze and support continual improvements in the quality of science, mathematics, engineering, and technology (SMET) education in both formal and informal settings. The vision for this program has been explored through a series of workshops over the past several years and documented in accompanying reports and monographs. (See [1-7, 10, 12, and 13].) These efforts have led to a characterization of the digital library as a learning environments and resources network for science, mathematics, engineering, and technology education, that is: * designed to meet the needs of learners, in both individual and collaborative settings; * constructed to enable dynamic use of a broad array of materials for learning primarily in digital format; and * managed actively to promote reliable anytime, anywhere access to quality collections and services, available both within and without the network. Underlying the NSDL program are several working assumptions. First, while there is currently no lack of "great piles of content" on the Web, there is an urgent need for "piles of great content". The difficulties in discovering and verifying the authority of appropriate Web-based material are certainly well known, yet there are many examples of learning resources of great promise available (particularly those exploiting the power of multiple media), with more added every day. The breadth and interconnectedness of the Web are simultaneously a great strength and shortcoming. Second, the "unit" or granularity of educational content can and will shrink, affording the opportunity for users to become creators and vice versa, as learning objects are reused, repackaged, and repurposed. To be sure, this scenario cannot take place without serious attention to intellectual property and digital rights management concerns. But new models and technologies are being explored (see a number of recent articles in the January issue of D-Lib Magazine). Third, there is a need for an "organizational infrastructure" that facilitates connections between distributed users and distributed content, as alluded to in the third bullet above. Finally, while much of the ongoing use of the library is envisioned to be "free" in the sense of the public good, there is an opportunity and a need to consider multiple alternative models of sustainability, particularly in the area of services offered by the digital library. More details about the NSDL program including information about proposal deadlines and current awards may be found at <http://www.ehr.nsf.gov/ehr/due/programs/nsdl>.
  8. Hjoerland, B.: Arguments for 'the bibliographical paradigm' : some thoughts inspired by the new English edition of the UDC (2007) 0.04
    0.03682615 = product of:
      0.0736523 = sum of:
        0.046423215 = weight(_text_:science in 552) [ClassicSimilarity], result of:
          0.046423215 = score(doc=552,freq=8.0), product of:
            0.1329271 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.050463587 = queryNorm
            0.34923816 = fieldWeight in 552, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.046875 = fieldNorm(doc=552)
        0.027229078 = weight(_text_:research in 552) [ClassicSimilarity], result of:
          0.027229078 = score(doc=552,freq=2.0), product of:
            0.14397179 = queryWeight, product of:
              2.8529835 = idf(docFreq=6931, maxDocs=44218)
              0.050463587 = queryNorm
            0.18912788 = fieldWeight in 552, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.8529835 = idf(docFreq=6931, maxDocs=44218)
              0.046875 = fieldNorm(doc=552)
      0.5 = coord(2/4)
    
    Abstract
    The term 'the bibliographic paradigm' is used in the literature of library and information science, but is a very seldom term and is almost always negatively described. This paper reconsiders this concept. Method. The method is mainly 'analytical'. Empirical data concerning the current state of the UDC-classification system are also presented in order to illuminate the connection between theory and practice. Analysis. The bibliographic paradigm is understood as a perspective in library and information science focusing on documents and information resources, their description, organization, mediation and use. This perspective is examined as one among other metatheories of library and information science and its philosophical assumptions and implications are outlined. Results. The neglect and misunderstanding of 'the bibliographic paradigm' as well as the quality of the new UDC-classification indicate that both the metatheoretical discourses on library and information science and its concrete practice seem to be in a state of crisis.
    Source
    Information research. 12(2007) no.4, paper colis06
  9. Severiens, T.; Hohlfeld, M.; Zimmermann, K.; Hilf, E.R.: PhysDoc - a distributed network of physics institutions documents : collecting, indexing, and searching high quality documents by using harvest (2000) 0.03
    0.030892741 = product of:
      0.061785482 = sum of:
        0.0226909 = weight(_text_:research in 6470) [ClassicSimilarity], result of:
          0.0226909 = score(doc=6470,freq=2.0), product of:
            0.14397179 = queryWeight, product of:
              2.8529835 = idf(docFreq=6931, maxDocs=44218)
              0.050463587 = queryNorm
            0.15760657 = fieldWeight in 6470, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.8529835 = idf(docFreq=6931, maxDocs=44218)
              0.0390625 = fieldNorm(doc=6470)
        0.039094582 = product of:
          0.078189164 = sum of:
            0.078189164 = weight(_text_:network in 6470) [ClassicSimilarity], result of:
              0.078189164 = score(doc=6470,freq=4.0), product of:
                0.22473325 = queryWeight, product of:
                  4.4533744 = idf(docFreq=1398, maxDocs=44218)
                  0.050463587 = queryNorm
                0.34791988 = fieldWeight in 6470, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.4533744 = idf(docFreq=1398, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=6470)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    PhysNet offers online services that enable a physicist to keep in touch with the worldwide physics community and to receive all information he or she may need. In addition to being of great value to physicists, these services are practical examples of the use of modern methods of digital libraries, in particular the use of metadata harvesting. One service is PhysDoc. This consists of a Harvest-based online information broker- and gatherer-network, which harvests information from the local web-servers of professional physics institutions worldwide (mostly in Europe and USA so far). PhysDoc focuses on scientific information posted by the individual scientist at his local server, such as documents, publications, reports, publication lists, and lists of links to documents. All rights are reserved for the authors who are responsible for the content and quality of their documents. PhysDis is an analogous service but specifically for university theses, with their dual requirements of examination work and publication. The strategy is to select high quality sites containing metadata. We report here on the present status of PhysNet, our experience in operating it, and the development of its usage. To continuously involve authors, research groups, and national societies is considered crucial for a future stable service.
  10. Hitchcock, S.; Bergmark, D.; Brody, T.; Gutteridge, C.; Carr, L.; Hall, W.; Lagoze, C.; Harnad, S.: Open citation linking : the way forward (2002) 0.03
    0.029866911 = product of:
      0.059733823 = sum of:
        0.032089777 = weight(_text_:research in 1207) [ClassicSimilarity], result of:
          0.032089777 = score(doc=1207,freq=4.0), product of:
            0.14397179 = queryWeight, product of:
              2.8529835 = idf(docFreq=6931, maxDocs=44218)
              0.050463587 = queryNorm
            0.22288933 = fieldWeight in 1207, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.8529835 = idf(docFreq=6931, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1207)
        0.027644044 = product of:
          0.055288088 = sum of:
            0.055288088 = weight(_text_:network in 1207) [ClassicSimilarity], result of:
              0.055288088 = score(doc=1207,freq=2.0), product of:
                0.22473325 = queryWeight, product of:
                  4.4533744 = idf(docFreq=1398, maxDocs=44218)
                  0.050463587 = queryNorm
                0.2460165 = fieldWeight in 1207, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.4533744 = idf(docFreq=1398, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1207)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    The speed of scientific communication - the rate of ideas affecting other researchers' ideas - is increasing dramatically. The factor driving this is free, unrestricted access to research papers. Measurements of user activity in mature eprint archives of research papers such as arXiv have shown, for the first time, the degree to which such services support an evolving network of texts commenting on, citing, classifying, abstracting, listing and revising other texts. The Open Citation project has built tools to measure this activity, to build new archives, and has been closely involved with the development of the infrastructure to support open access on which these new services depend. This is the story of the project, intertwined with the concurrent emergence of the Open Archives Initiative (OAI). The paper describes the broad scope of the project's work, showing how it has progressed from early demonstrators of reference linking to produce Citebase, a Web-based citation and impact-ranked search service, and how it has supported the development of the EPrints.org software for building OAI-compliant archives. The work has been underpinned by analysis and experiments on the semantics of documents (digital objects) to determine the features required for formally perfect linking - instantiated as an application programming interface (API) for reference linking - that will enable other applications to build on this work in broader digital library information environments.
  11. Goodchild, M.F.: ¬The Alexandria Digital Library Project : review, assessment, and prospects (2004) 0.03
    0.029423734 = product of:
      0.05884747 = sum of:
        0.027080212 = weight(_text_:science in 1153) [ClassicSimilarity], result of:
          0.027080212 = score(doc=1153,freq=2.0), product of:
            0.1329271 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.050463587 = queryNorm
            0.20372227 = fieldWeight in 1153, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1153)
        0.031767257 = weight(_text_:research in 1153) [ClassicSimilarity], result of:
          0.031767257 = score(doc=1153,freq=2.0), product of:
            0.14397179 = queryWeight, product of:
              2.8529835 = idf(docFreq=6931, maxDocs=44218)
              0.050463587 = queryNorm
            0.22064918 = fieldWeight in 1153, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.8529835 = idf(docFreq=6931, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1153)
      0.5 = coord(2/4)
    
    Abstract
    The Alexandria Digital Library (ADL) was established in the late 1990s as a response to several perceived problems of traditional map libraries, notably access and organization. By 1999 it had evolved into an operational digital library, offering a well-defined set of services to a broad user community, based on an extensive collection of georeferenced information objects. The vision of ADL continues to evolve, as technology makes new services possible, as its users become more sophisticated and demanding, and as the broader field of geographic information science (GIScience) identifies new avenues for research and application.
  12. Zia, L.L.: new projects and a progress report : ¬The NSF National Science, Technology, Engineering, and Mathematics Education Digital Library (NSDL) program (2001) 0.03
    0.029423734 = product of:
      0.05884747 = sum of:
        0.027080212 = weight(_text_:science in 1227) [ClassicSimilarity], result of:
          0.027080212 = score(doc=1227,freq=8.0), product of:
            0.1329271 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.050463587 = queryNorm
            0.20372227 = fieldWeight in 1227, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.02734375 = fieldNorm(doc=1227)
        0.031767257 = weight(_text_:research in 1227) [ClassicSimilarity], result of:
          0.031767257 = score(doc=1227,freq=8.0), product of:
            0.14397179 = queryWeight, product of:
              2.8529835 = idf(docFreq=6931, maxDocs=44218)
              0.050463587 = queryNorm
            0.22064918 = fieldWeight in 1227, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              2.8529835 = idf(docFreq=6931, maxDocs=44218)
              0.02734375 = fieldNorm(doc=1227)
      0.5 = coord(2/4)
    
    Abstract
    The National Science Foundation's (NSF) National Science, Technology, Engineering, and Mathematics Education Digital Library (NSDL) program comprises a set of projects engaged in a collective effort to build a national digital library of high quality science, technology, engineering, and mathematics (STEM) educational materials for students and teachers at all levels, in both formal and informal settings. By providing broad access to a rich, reliable, and authoritative collection of interactive learning and teaching resources and associated services in a digital environment, the NSDL will encourage and sustain continual improvements in the quality of STEM education for all students, and serve as a resource for lifelong learning. Though the program is relatively new, its vision and operational framework have been developed over a number of years through various workshops and planning meetings. The NSDL program held its first formal funding cycle during fiscal year 2000 (FY00), accepting proposals in four tracks: Core Integration System, Collections, Services, and Targeted Research. Twenty-nine awards were made across these tracks in September 2000. Brief descriptions of each FY00 project appeared in an October 2000 D-Lib Magazine article; full abstracts are available from the Awards Section at <http://www.ehr.nsf.gov/ehr/due/programs/nsdl/>. In FY01 the program received one hundred-nine proposals across its four tracks with the number of proposals in the collections, services, and targeted research tracks increasing to one hundred-one from the eighty received in FY00. In September 2001 grants were awarded to support 35 new projects: 1 project in the core integration track, 18 projects in the collections track, 13 in the services track, and 3 in targeted research. Two NSF directorates, the Directorate for Geosciences (GEO) and the Directorate for Mathematical and Physical Sciences (MPS) are both providing significant co-funding on several projects, illustrating the NSDL program's facilitation of the integration of research and education, an important strategic objective of the NSF. Thus far across both fiscal years of the program fifteen projects have enjoyed this joint support. Following is a list of the FY01 awards indicating the official NSF award number (each beginning with DUE), the project title, the grantee institution, and the name of the Principal Investigator (PI). A condensed description of the project is also included. Full abstracts are available from the Awards Section at the NSDL program site at <http://www.ehr.nsf.gov/ehr/due/programs/nsdl/>. (Grants with shared titles are formal collaborations and are grouped together.) The projects are displayed by track and are listed by award number. In addition, six of these projects have explicit relevance and application to K-12 education. Six others clearly have potential for application to the K-12 arena. The NSDL program will have another funding cycle in fiscal year 2002 with the next program solicitation expected to be available in January 2002, and an anticipated deadline for proposals in mid-April 2002.
  13. Bates, M.J.: Defining the information disciplines in encyclopedia development (2007) 0.03
    0.028096987 = product of:
      0.056193974 = sum of:
        0.033503074 = weight(_text_:science in 3400) [ClassicSimilarity], result of:
          0.033503074 = score(doc=3400,freq=6.0), product of:
            0.1329271 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.050463587 = queryNorm
            0.25204095 = fieldWeight in 3400, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3400)
        0.0226909 = weight(_text_:research in 3400) [ClassicSimilarity], result of:
          0.0226909 = score(doc=3400,freq=2.0), product of:
            0.14397179 = queryWeight, product of:
              2.8529835 = idf(docFreq=6931, maxDocs=44218)
              0.050463587 = queryNorm
            0.15760657 = fieldWeight in 3400, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.8529835 = idf(docFreq=6931, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3400)
      0.5 = coord(2/4)
    
    Abstract
    Introduction. Dramatic changes in society and in the information disciplines and professions constituted the basis for a re-conceptualization of the content of the Encyclopedia of Library and Information Sciences. Method. Marcia J. Bates and Mary Niles Maack, Editors of the forthcoming Third Edition, working with a fifty-person Editorial Advisory Board, developed the new, projected contents list for the encyclopedia, based upon principles developed in the re-conceptualization. Analysis. Drawing on Bates' "Invisible Substrate of Information Science" article, and other sources, the information disciplines are seen as consisting of the "disciplines of the cultural record" and the "information sciences." These disciplines are all concerned with the collection, organization and access to information, across the entire traditional spectrum of disciplines, such as the humanities and natural and social sciences. Results. The disciplines covered in the encyclopedia are library and information science, archival science, records management, information systems, informatics, knowledge management, museum studies, bibliography, document and genre studies, and social studies of information. A variety of cognate disciplines are briefly covered as well. Conclusions. The information disciplines are coming into their own in the 21st century. They are increasingly prominent in universities and in society generally, and, possibly with the help of the encyclopedia, may come increasingly to be seen as a set of related disciplines traversing a spectrum of their own.
    Source
    Information Research. 12(2007) no.4, paper colis29
  14. Zia, L.L.: ¬The NSF National Science, Technology, Engineering, and Mathematics Education Digital Library (NSDL) Program : new projects from fiscal year 2004 (2005) 0.03
    0.026590224 = product of:
      0.05318045 = sum of:
        0.025951369 = weight(_text_:science in 1221) [ClassicSimilarity], result of:
          0.025951369 = score(doc=1221,freq=10.0), product of:
            0.1329271 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.050463587 = queryNorm
            0.19523008 = fieldWeight in 1221, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0234375 = fieldNorm(doc=1221)
        0.027229078 = weight(_text_:research in 1221) [ClassicSimilarity], result of:
          0.027229078 = score(doc=1221,freq=8.0), product of:
            0.14397179 = queryWeight, product of:
              2.8529835 = idf(docFreq=6931, maxDocs=44218)
              0.050463587 = queryNorm
            0.18912788 = fieldWeight in 1221, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              2.8529835 = idf(docFreq=6931, maxDocs=44218)
              0.0234375 = fieldNorm(doc=1221)
      0.5 = coord(2/4)
    
    Abstract
    In fall 2004, the National Science Foundation's (NSF) National Science, Technology, Engineering, and Mathematics Education Digital Library (NSDL) program made new grants in three tracks: Pathways, Services, and Targeted Research. Together with projects started in fiscal years (FY) 2000-03 these new grants continue the development of a national digital library of high quality educational resources to support learning at all levels in science, technology, engineering, and mathematics (STEM). By enabling broad access to reliable and authoritative learning and teaching materials and associated services in a digital environment, the National Science Digital Library expects to promote continual improvements in the quality of formal STEM education, and also to serve as a resource for informal and lifelong learning. Proposals for the FY05 funding cycle are due April 11, 2005, and the full solicitation is available at <http://www.nsf.gov/publications/pub_summ.jsp?ods_key=nsf05545>. Two NSF directorates, the Directorate for Geosciences (GEO) and the Directorate for Mathematical and Physical Sciences (MPS) have both provided significant co-funding for over twenty projects in the first four years of the program, illustrating the NSDL program's facilitation of the integration of research and education, an important strategic objective of the NSF. In FY2004, the NSDL program introduced a new Pathways track, replacing the earlier Collections track. The Services track strongly encouraged two particular types of projects: (1) selection services and (2) usage development workshops. * Pathways projects provide stewardship for educational content and services needed by a broad community of learners; * Selection services projects identify and increase the high-quality STEM educational content known to NSDL; and * Usage development workshops engage new communities of learners in the use of NSDL and its resources.
    These three elements reflect a refinement of NSDL's initial emphasis on collecting educational resources, materials, and other digital learning objects, towards enabling learners to "connect" or otherwise find pathways to resources appropriate to their needs. Projects are also developing both the capacities of individual users and the capacity of larger communities of learners to use and contribute to NSDL. For the FY2004 funding cycle, one hundred forty-four proposals sought approximately $126.5 million in total funding. Twenty-four new awards were made with a cumulative budget of approximately $10.2 million. These include four in the Pathways track, twelve in the Services track, and eight in the Targeted Research track. As in the earlier years of the program, sister directorates to the NSF Directorate for Education and Human Resources (EHR) are providing significant co-funding of projects. Participating directorates for FY2004 are GEO and MPS. Within EHR, the Advanced Technological Education program and the Experimental Program to Stimulate Competitive Research are also co-funding projects. Complete information on the technical and organizational progress of NSDL including links to current Standing Committees and community workspaces may be found at <http://nsdl.org/community/nsdlgroups.php>. All workspaces are open to the public, and interested organizations and individuals are encouraged to learn more about NSDL and join in its development. Following is a list of the new FY04 awards displaying the official NSF award number, the project title, the grantee institution, and the name of the Principal Investigator (PI). A condensed description of the project is also included. Full abstracts are available from the NSDL program site (under Related URLs see the link to NSDL program site (under Related URLs see the link to Abstracts of Recent Awards Made Through This Program.) The projects are displayed by track and are listed by award number. In addition, seven of these projects have explicit relevance to applications to pre-K to 12 education (indicated with a * below). Four others have clear potential for application to the pre-K to 12 arena (indicated with a ** below).
  15. San Segundo Manuel, R.: ¬The use of the UDC in Spain, and related issues of education, training and research (2007) 0.03
    0.025716392 = product of:
      0.051432785 = sum of:
        0.019343007 = weight(_text_:science in 2529) [ClassicSimilarity], result of:
          0.019343007 = score(doc=2529,freq=2.0), product of:
            0.1329271 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.050463587 = queryNorm
            0.1455159 = fieldWeight in 2529, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2529)
        0.032089777 = weight(_text_:research in 2529) [ClassicSimilarity], result of:
          0.032089777 = score(doc=2529,freq=4.0), product of:
            0.14397179 = queryWeight, product of:
              2.8529835 = idf(docFreq=6931, maxDocs=44218)
              0.050463587 = queryNorm
            0.22288933 = fieldWeight in 2529, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.8529835 = idf(docFreq=6931, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2529)
      0.5 = coord(2/4)
    
    Abstract
    It was from 1895 onwards, the year in which the First International Bibliography Conference was held and the Decimal System began to be primarily implemented on a European scale, that it first began to be disseminated in Spain . The introduction of the UDC (Universal Decimal Classification) scheme was initially subject to numerous difficulties owing to isolated incidents with librarians, but it subsequently received the support of the Spanish Administration. It was in 1939 that the UDC was officially implemented in all Spanish libraries although what was introduced in the decree was the 1934 German version. Nevertheless, in its practical implementation in libraries, the latest version of the UDC tables was introduced. Finally, from 1989 onwards, the compulsoriness of using the UDC to classify collections and catalogues was repealed, although its implementation in libraries, catalogues and bibliographies is almost complete. The UDC is taught within the framework of regulated Library and Information Science courses, both from a theoretical and from a practical point of view. Research in Spain on the UDC is already quite important; translations, adaptations and versions of the tables have been undertaken and there are also analytical works on different aspects of the UDC system.
  16. Bartolo, L.M.; Lowe, C.S.; Sadoway, D.R.; Powell, A.C.; Glotzer, S.C.: NSDL MatDL : exploring digital library roles (2005) 0.03
    0.02502302 = product of:
      0.05004604 = sum of:
        0.027355144 = weight(_text_:science in 1181) [ClassicSimilarity], result of:
          0.027355144 = score(doc=1181,freq=4.0), product of:
            0.1329271 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.050463587 = queryNorm
            0.20579056 = fieldWeight in 1181, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1181)
        0.0226909 = weight(_text_:research in 1181) [ClassicSimilarity], result of:
          0.0226909 = score(doc=1181,freq=2.0), product of:
            0.14397179 = queryWeight, product of:
              2.8529835 = idf(docFreq=6931, maxDocs=44218)
              0.050463587 = queryNorm
            0.15760657 = fieldWeight in 1181, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.8529835 = idf(docFreq=6931, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1181)
      0.5 = coord(2/4)
    
    Abstract
    A primary goal of the NSDL Materials Digital Library (MatDL) is to bring materials science research and education closer together. MatDL is exploring the various roles digital libraries can serve in the materials science community including: 1) supporting a virtual lab, 2) developing markup language applications, and 3) building tools for metadata capture. MatDL is being integrated into an MIT virtual laboratory experience. Early student self-assessment survey results expressed positive opinions of the potential value of MatDL in supporting a virtual lab and in accomplishing additional educational objectives. A separate survey suggested that the effectiveness of a virtual lab may approach that of a physical lab on some laboratory learning objectives. MatDL is collaboratively developing a materials property grapher (KSU and MIT) and a submission tool (KSU and U-M). MatML is an extensible markup language for exchanging materials information developed by materials data experts in industry, government, standards organizations, and professional societies. The web-based MatML grapher allows students to compare selected materials properties across approximately 80 MatML-tagged materials. The MatML grapher adds value in this educational context by allowing students to utilize real property data to make optimal material selection decisions. The submission tool has been integrated into the regular workflow of U-M students and researchers generating nanostructure images. It prompts users for domain-specific information, automatically generating and attaching keywords and editable descriptions.
  17. Brand, A.: CrossRef turns one (2001) 0.02
    0.023396341 = product of:
      0.046792682 = sum of:
        0.023211608 = weight(_text_:science in 1222) [ClassicSimilarity], result of:
          0.023211608 = score(doc=1222,freq=8.0), product of:
            0.1329271 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.050463587 = queryNorm
            0.17461908 = fieldWeight in 1222, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0234375 = fieldNorm(doc=1222)
        0.023581075 = weight(_text_:research in 1222) [ClassicSimilarity], result of:
          0.023581075 = score(doc=1222,freq=6.0), product of:
            0.14397179 = queryWeight, product of:
              2.8529835 = idf(docFreq=6931, maxDocs=44218)
              0.050463587 = queryNorm
            0.16378956 = fieldWeight in 1222, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.8529835 = idf(docFreq=6931, maxDocs=44218)
              0.0234375 = fieldNorm(doc=1222)
      0.5 = coord(2/4)
    
    Abstract
    CrossRef, the only full-blown application of the Digital Object Identifier (DOI®) System to date, is now a little over a year old. What started as a cooperative effort among publishers and technologists to prototype DOI-based linking of citations in e-journals evolved into an independent, non-profit enterprise in early 2000. We have made considerable headway during our first year, but there is still much to be done. When CrossRef went live with its collaborative linking service last June, it had enabled reference links in roughly 1,100 journals from a member base of 33 publishers, using a functional prototype system. The DOI-X prototype was described in an article published in D-Lib Magazine in February of 2000. On the occasion of CrossRef's first birthday as a live service, this article provides a non-technical overview of our progress to date and the major hurdles ahead. The electronic medium enriches the research literature arena for all players -- researchers, librarians, and publishers -- in numerous ways. Information has been made easier to discover, to share, and to sell. To take a simple example, the aggregation of book metadata by electronic booksellers was a huge boon to scholars seeking out obscure backlist titles, or discovering books they would never otherwise have known to exist. It was equally a boon for the publishers of those books, who saw an unprecedented surge in sales of backlist titles with the advent of centralized electronic bookselling. In the serials sphere, even in spite of price increases and the turmoil surrounding site licenses for some prime electronic content, libraries overall are now able to offer more content to more of their patrons. Yet undoubtedly, the key enrichment for academics and others navigating a scholarly corpus is linking, and in particular the linking that takes the reader out of one document and into another in the matter of a click or two. Since references are how authors make explicit the links between their work and precedent scholarship, what could be more fundamental to the reader than making those links immediately actionable? That said, automated linking is only really useful from a research perspective if it works across publications and across publishers. Not only do academics think about their own writings and those of their colleagues in terms of "author, title, rough date" -- the name of the journal itself is usually not high on the list of crucial identifying features -- but they are oblivious as to the identity of the publishers of all but their very favorite books and journals.
    Citation linking is thus also a huge benefit to journal publishers, because, as with electronic bookselling, it drives readers to their content in yet another way. In step with what was largely a subscription-based economy for journal sales, an "article economy" appears to be emerging. Journal publishers sell an increasing amount of their content on an article basis, whether through document delivery services, aggregators, or their own pay-per-view systems. At the same time, most research-oriented access to digitized material is still mediated by libraries. Resource discovery services must be able to authenticate subscribed or licensed users somewhere in the process, and ensure that a given user is accessing as a default the version of an article that their library may have already paid for. The well-known "appropriate copy" issue is addressed below. Another benefit to publishers from including outgoing citation links is simply the value they can add to their own journals. Publishers carry out the bulk of the technological prototyping and development that has produced electronic journals and the enhanced functionality readers have come to expect. There is clearly competition among them to provide readers with the latest features. That a number of publishers would agree to collaborate in the establishment of an infrastructure for reference linking was thus by no means predictable. CrossRef was incorporated in January of 2000 as a collaborative venture among 12 of the world's top scientific and scholarly publishers, both commercial and not-for-profit, to enable cross-publisher reference linking throughout the digital journal literature. The founding members were Academic Press, a Harcourt Company; the American Association for the Advancement of Science (the publisher of Science); American Institute of Physics (AIP); Association for Computing Machinery (ACM); Blackwell Science; Elsevier Science; The Institute of Electrical and Electronics Engineers, Inc. (IEEE); Kluwer Academic Publishers (a Wolters Kluwer Company); Nature; Oxford University Press; Springer-Verlag; and John Wiley & Sons, Inc. Start-up funds for CrossRef were provided as loans from eight of the original publishers.
  18. Heery, R.; Carpenter, L.; Day, M.: Renardus project developments and the wider digital library context (2001) 0.02
    0.022458244 = product of:
      0.04491649 = sum of:
        0.025369195 = weight(_text_:research in 1219) [ClassicSimilarity], result of:
          0.025369195 = score(doc=1219,freq=10.0), product of:
            0.14397179 = queryWeight, product of:
              2.8529835 = idf(docFreq=6931, maxDocs=44218)
              0.050463587 = queryNorm
            0.1762095 = fieldWeight in 1219, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              2.8529835 = idf(docFreq=6931, maxDocs=44218)
              0.01953125 = fieldNorm(doc=1219)
        0.019547291 = product of:
          0.039094582 = sum of:
            0.039094582 = weight(_text_:network in 1219) [ClassicSimilarity], result of:
              0.039094582 = score(doc=1219,freq=4.0), product of:
                0.22473325 = queryWeight, product of:
                  4.4533744 = idf(docFreq=1398, maxDocs=44218)
                  0.050463587 = queryNorm
                0.17395994 = fieldWeight in 1219, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.4533744 = idf(docFreq=1398, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=1219)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    For those building digital library services, the organisational barriers are sometimes far more intractable than technological issues. This was firmly flagged in one of the first workshops focusing specifically on the digital library research agenda: Digital libraries are not simply technological constructs; they exist within a rich legal, social, and economic context, and will succeed only to the extent that they meet these broader needs. The innovatory drive within the development of digital library services thrives on the tension between meeting both technical and social imperatives. The Renardus project partners have previously taken parts in projects establishing the technical basis for subject gateways (e.g., ROADS, DESIRE], EELS) and are aware that technical barriers to interoperability are outweighed by challenges relating to the organisational and business models used. Within the Renardus project there has been a determination to address these organisational and business issues from the beginning. Renardus intends initially to create a pilot service, targeting the European scholar with a single point of access to quality selected Web resources. Looking ahead beyond current project funding, it aims to create the organisational and technological infrastructure for a sustainable service. This means the project is concerned with the range of processes required to establish a viable service, and is explicitly addressing business issues as well as providing a technical infrastructure. The overall aim of Renardus is to establish a collaborative framework for European subject gateways that will benefit both users in terms of enhanced services, and the gateways themselves in terms of shared solutions. In order to achieve this aim, Renardus will provide firstly a pilot service for the European academic and research communities brokering access to those European-based information gateways that currently participate in the project; in other words, brokering to gateways that are already in existence. Secondly the project will explore ways to establish the organisational basis for co-operative efforts such as metadata sharing, joint technical solutions and agreement on standardisation. It is intended that this exploration will feed back valuable experience to the individual participating gateways to suggest ways their services can be enhanced.
    Funding from the UK Electronic Libraries (eLib) programme and the European Community's Fourth Framework programme assisted the initial emergence of information gateways (e.g., SOSIG, EEVL, OMNI in the UK, and EELS in Sweden). Other gateways have been developed by initiatives co-ordinated by national libraries (such as DutchESS in the Netherlands, and AVEL and EdNA in Australia) and by universities and research funding bodies (e.g., GEM in the US, the Finnish Virtual Library, and the German SSG-FI services). An account of the emergence of subject gateways since the mid-1990s by Dempsey gives an historical perspective -- informed by UK experience in particular -- and also considers the future development of subject gateways in relation to other services. When considering the development and future of gateways, it would be helpful to have a clear definition of the service offered by a so-called 'subject gateway'. Precise definitions of 'information gateways', 'subject gateways' and 'quality controlled subject gateways' have been debated elsewhere. Koch has reviewed definitions and suggested typologies that are useful, not least in showing the differences that exist between broadly similar services. Working definitions that we will use in this article are that a subject gateway provides a search service to high quality Web resources selected from a particular subject area, whereas information gateways have a wider criteria for selection of resources, e.g., a national approach. Inevitably in a rapidly changing international environment different people perceive different emphases in attempts to label services, the significant issue is that users, developers and designers can recognise and benefit from commonalties in approach.
    The Renardus project has brought together gateways that are 'large-scale national initiatives'. Within the European context this immediately introduces a diversity of organisations, as responsibility for national gateway initiatives is located differently, for example, in national libraries, national agencies with responsibility for educational technology infrastructure, and within universities or consortia of universities. Within the project, gateways are in some cases represented directly by their own personnel, in some cases by other departments or research centres, but not always by the people responsible for providing the gateway service. For example, the UK Resource Discovery Network (RDN) is represented in the project by UKOLN (formerly part of the Resource Discovery Network Centre) and the Institute of Learning and Research Technology (ILRT), University of Bristol -- an RDN 'hub' service provider -- who are primarily responsible for dissemination. Since the start of the project there have been changes within the organisational structures providing gateways and within the service ambitions of gateways themselves. Such lack of stability is inherent within the Internet service environment, and this presents challenges to Renardus activity that has to be planned for a three-year period. For example, within the gateway's funding environment there is now an exploration of 'subject portals' offering more extended services than gateways. There is also potential commercial interest for including gateways as a value-added component to existing commercial services, and new offerings from possible competitors such as Google's Web Directory and country based services. This short update on the Renardus project intends to inform the reader of progress within the project and to give some wider context to its main themes by locating the project within the broader arena of digital library activity. There are twelve partners in the project from Denmark, Finland, France, Germany, the Netherlands and Sweden, as well as the UK. In particular we will focus on the specific activity in which UKOLN is involved: the architectural design, the specification of functional requirements, reaching consensus on a collaborative business model, etc. We will also consider issues of metadata management where all partners have interests. We will highlight implementation issues that connect to areas of debate elsewhere. In particular we see connections with activity related to establishing architectural models for digital library services, connections to the services that may emerge from metadata sharing using the Open Archives Initiative metadata sharing protocol, and links with work elsewhere on navigation of digital information spaces by means of controlled vocabularies.
  19. Decimal Classification Editorial Policy Committee (2002) 0.02
    0.021757938 = product of:
      0.043515876 = sum of:
        0.019343007 = weight(_text_:science in 236) [ClassicSimilarity], result of:
          0.019343007 = score(doc=236,freq=2.0), product of:
            0.1329271 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.050463587 = queryNorm
            0.1455159 = fieldWeight in 236, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0390625 = fieldNorm(doc=236)
        0.024172867 = product of:
          0.048345733 = sum of:
            0.048345733 = weight(_text_:22 in 236) [ClassicSimilarity], result of:
              0.048345733 = score(doc=236,freq=4.0), product of:
                0.17671488 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050463587 = queryNorm
                0.27358043 = fieldWeight in 236, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=236)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    The Decimal Classification Editorial Policy Committee (EPC) held its Meeting 117 at the Library Dec. 3-5, 2001, with chair Andrea Stamm (Northwestern University) presiding. Through its actions at this meeting, significant progress was made toward publication of DDC unabridged Edition 22 in mid-2003 and Abridged Edition 14 in early 2004. For Edition 22, the committee approved the revisions to two major segments of the classification: Table 2 through 55 Iran (the first half of the geographic area table) and 900 History and geography. EPC approved updates to several parts of the classification it had already considered: 004-006 Data processing, Computer science; 340 Law; 370 Education; 510 Mathematics; 610 Medicine; Table 3 issues concerning treatment of scientific and technical themes, with folklore, arts, and printing ramifications at 398.2 - 398.3, 704.94, and 758; Table 5 and Table 6 Ethnic Groups and Languages (portions concerning American native peoples and languages); and tourism issues at 647.9 and 790. Reports on the results of testing the approved 200 Religion and 305-306 Social groups schedules were received, as was a progress report on revision work for the manual being done by Ross Trotter (British Library, retired). Revisions for Abridged Edition 14 that received committee approval included 010 Bibliography; 070 Journalism; 150 Psychology; 370 Education; 380 Commerce, communications, and transportation; 621 Applied physics; 624 Civil engineering; and 629.8 Automatic control engineering. At the meeting the committee received print versions of _DC&_ numbers 4 and 5. Primarily for the use of Dewey translators, these cumulations list changes, substantive and cosmetic, to DDC Edition 21 and Abridged Edition 13 for the period October 1999 - December 2001. EPC will hold its Meeting 118 at the Library May 15-17, 2002.
  20. Choudhury, G.S.; DiLauro, T.; Droettboom, M.; Fujinaga, I.; MacMillan, K.: Strike up the score : deriving searchable and playable digital formats from sheet music (2001) 0.02
    0.021024419 = product of:
      0.042048838 = sum of:
        0.011605804 = weight(_text_:science in 1220) [ClassicSimilarity], result of:
          0.011605804 = score(doc=1220,freq=2.0), product of:
            0.1329271 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.050463587 = queryNorm
            0.08730954 = fieldWeight in 1220, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0234375 = fieldNorm(doc=1220)
        0.030443033 = weight(_text_:research in 1220) [ClassicSimilarity], result of:
          0.030443033 = score(doc=1220,freq=10.0), product of:
            0.14397179 = queryWeight, product of:
              2.8529835 = idf(docFreq=6931, maxDocs=44218)
              0.050463587 = queryNorm
            0.21145138 = fieldWeight in 1220, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              2.8529835 = idf(docFreq=6931, maxDocs=44218)
              0.0234375 = fieldNorm(doc=1220)
      0.5 = coord(2/4)
    
    Abstract
    The Lester S. Levy Collection of Sheet Music represents one of the largest collections of sheet music available online. The Collection, part of the Special Collections of the Milton S. Eisenhower Library (MSEL) at Johns Hopkins University, comprises nearly 30,000 pieces of music which correspond to nearly 130,000 sheets of music and associated cover art. It provides a rich, multi-faceted view of life in late 19th and early 20th century America, featuring famous songs such as "The Star-Spangled Banner", "Hail Columbia", and "Yankee Doodle Dandy" along with engravings, lithographs, and many forms of early photo reproduction on song covers. Scholars from various disciplines have used the Collection for both research and teaching; the online collection, described below, has proven popular with the general public as well. In the early 1990s, the MSEL considered the need for preservation of the Collection, while respecting the need for continued access. Accordingly, the MSEL evaluated two ideas to meet the dual goals of enhancing access while reducing the handling of the physical collection-microfilming and digitization. With funding from the National Endowment for the Humanities (NEH) in 1994, the Milton S. Eisenhower Library began the process of digitizing the Levy Collection. While there is now a reasonable amount of experience with digitization of library collections, this was not the case in 1994. Not only is the Levy Collection a relatively large online collection, it is also one of the first major digitization efforts by an academic research library. The Levy (Phase I) Project team initially hired a subcontractor to implement and manage the digitization. Both the subcontractor and the Levy team realized some rather "painful" lessons regarding large-scale digitization projects. The workload associated with digitizing the Levy Collection, especially the process of inspecting, editing, and correcting images and attaching appropriate metadata, proved onerous and overwhelming. In fact, the subcontractor declared bankruptcy, leaving the responsibility for completing the digitization with the Levy team.
    In the final report to NEH, the Curator of Special Collections at the MSEL stated, "the most useful thing we learned from this project was that you can never overestimate the amount of time it will take to create a quality digital product" (Requardt 1998). The word "resources" might represent a more comprehensive choice than the word "time" in this previous statement. This "sink" of time and resources manifested itself by an increasing allocation of human labor and time to deal with workflow issues related to large-scale digitization. The Levy Collection experience provides ample evidence that there will be mistakes during and after digitization and that unforeseen challenges or difficulties will arise, especially when dealing with rare or fragile materials. The current strategy of allocating additional human labor neither limits costs nor scales well. Consequently, the Digital Knowledge Center (DKC) of the Milton S. Eisenhower Library sought and secured funding for the development of a workflow management system through the National Science Foundation's (NSF) Digital Libraries Initiative, Phase 2 and the Institute for Museum and Library Services (IMLS)6 National Leadership Grant Program. The Levy family and a technology entrepreneur in Maryland provided additional funding for other aspects of the project. The mission of this second phase of the Levy project ("Levy II") can be summarized as follows: * Reduce costs for large collection ingestion by creating a suite of open-source processes, tools and interfaces for workflow management * Increase access capabilities by providing a suite of research tools * Demonstrate utility of tools and processes with a subset of the online Levy Collection The cornerstones of the workflow management system include: optical music recognition (OMR) software to generate a logical representation of the score -- for sound generation, musical searching, and musicological research -- and an automated name authority control system to disambiguate names (e.g., the authors Mark Twain and Samuel Clemens are the same individual). The research tools focus upon enhanced searching capabilities through the development and application of a fast, disk-based search engine for lyrics and music, and the incorporation of an XML structure for metadata. Though this paper focuses on the OMR component of our work, a companion paper to be published in a future issue of D-Lib will describe more fully the other tools (e.g., the automated name authority control system and the disk-based search engine), the overall workflow management system, and the project management process.

Languages

  • e 82
  • d 2
  • i 1
  • More… Less…