Search (130 results, page 1 of 7)

  • × type_ss:"a"
  • × type_ss:"el"
  • × year_i:[2010 TO 2020}
  1. Bensman, S.J.: Eugene Garfield, Francis Narin, and PageRank : the theoretical bases of the Google search engine (2013) 0.15
    0.15254721 = product of:
      0.30509442 = sum of:
        0.07465562 = weight(_text_:search in 1149) [ClassicSimilarity], result of:
          0.07465562 = score(doc=1149,freq=4.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.43445963 = fieldWeight in 1149, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0625 = fieldNorm(doc=1149)
        0.2304388 = sum of:
          0.1768519 = weight(_text_:engine in 1149) [ClassicSimilarity], result of:
            0.1768519 = score(doc=1149,freq=4.0), product of:
              0.26447627 = queryWeight, product of:
                5.349498 = idf(docFreq=570, maxDocs=44218)
                0.049439456 = queryNorm
              0.6686872 = fieldWeight in 1149, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                5.349498 = idf(docFreq=570, maxDocs=44218)
                0.0625 = fieldNorm(doc=1149)
          0.053586908 = weight(_text_:22 in 1149) [ClassicSimilarity], result of:
            0.053586908 = score(doc=1149,freq=2.0), product of:
              0.17312855 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.049439456 = queryNorm
              0.30952093 = fieldWeight in 1149, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0625 = fieldNorm(doc=1149)
      0.5 = coord(2/4)
    
    Abstract
    This paper presents a test of the validity of using Google Scholar to evaluate the publications of researchers by comparing the premises on which its search engine, PageRank, is based, to those of Garfield's theory of citation indexing. It finds that the premises are identical and that PageRank and Garfield's theory of citation indexing validate each other.
    Date
    17.12.2013 11:02:22
  2. Schaer, P.; Mayr, P.; Sünkler, S.; Lewandowski, D.: How relevant is the long tail? : a relevance assessment study on million short (2016) 0.15
    0.15173718 = product of:
      0.20231625 = sum of:
        0.050382458 = weight(_text_:web in 3144) [ClassicSimilarity], result of:
          0.050382458 = score(doc=3144,freq=6.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.3122631 = fieldWeight in 3144, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3144)
        0.07377557 = weight(_text_:search in 3144) [ClassicSimilarity], result of:
          0.07377557 = score(doc=3144,freq=10.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.4293381 = fieldWeight in 3144, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3144)
        0.07815824 = product of:
          0.15631647 = sum of:
            0.15631647 = weight(_text_:engine in 3144) [ClassicSimilarity], result of:
              0.15631647 = score(doc=3144,freq=8.0), product of:
                0.26447627 = queryWeight, product of:
                  5.349498 = idf(docFreq=570, maxDocs=44218)
                  0.049439456 = queryNorm
                0.59104156 = fieldWeight in 3144, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  5.349498 = idf(docFreq=570, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3144)
          0.5 = coord(1/2)
      0.75 = coord(3/4)
    
    Abstract
    Users of web search engines are known to mostly focus on the top ranked results of the search engine result page. While many studies support this well known information seeking pattern only few studies concentrate on the question what users are missing by neglecting lower ranked results. To learn more about the relevance distributions in the so-called long tail we conducted a relevance assessment study with the Million Short long-tail web search engine. While we see a clear difference in the content between the head and the tail of the search engine result list we see no statistical significant differences in the binary relevance judgments and weak significant differences when using graded relevance. The tail contains different but still valuable results. We argue that the long tail can be a rich source for the diversification of web search engine result lists but it needs more evaluation to clearly describe the differences.
  3. Rajasurya, S.; Muralidharan, T.; Devi, S.; Swamynathan, S.: Semantic information retrieval using ontology in university domain (2012) 0.14
    0.13841115 = product of:
      0.1845482 = sum of:
        0.05817665 = weight(_text_:web in 2861) [ClassicSimilarity], result of:
          0.05817665 = score(doc=2861,freq=8.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.36057037 = fieldWeight in 2861, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2861)
        0.08729243 = weight(_text_:search in 2861) [ClassicSimilarity], result of:
          0.08729243 = score(doc=2861,freq=14.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.5079997 = fieldWeight in 2861, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2861)
        0.03907912 = product of:
          0.07815824 = sum of:
            0.07815824 = weight(_text_:engine in 2861) [ClassicSimilarity], result of:
              0.07815824 = score(doc=2861,freq=2.0), product of:
                0.26447627 = queryWeight, product of:
                  5.349498 = idf(docFreq=570, maxDocs=44218)
                  0.049439456 = queryNorm
                0.29552078 = fieldWeight in 2861, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.349498 = idf(docFreq=570, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2861)
          0.5 = coord(1/2)
      0.75 = coord(3/4)
    
    Abstract
    Today's conventional search engines hardly do provide the essential content relevant to the user's search query. This is because the context and semantics of the request made by the user is not analyzed to the full extent. So here the need for a semantic web search arises. SWS is upcoming in the area of web search which combines Natural Language Processing and Artificial Intelligence. The objective of the work done here is to design, develop and implement a semantic search engine- SIEU(Semantic Information Extraction in University Domain) confined to the university domain. SIEU uses ontology as a knowledge base for the information retrieval process. It is not just a mere keyword search. It is one layer above what Google or any other search engines retrieve by analyzing just the keywords. Here the query is analyzed both syntactically and semantically. The developed system retrieves the web results more relevant to the user query through keyword expansion. The results obtained here will be accurate enough to satisfy the request made by the user. The level of accuracy will be enhanced since the query is analyzed semantically. The system will be of great use to the developers and researchers who work on web. The Google results are re-ranked and optimized for providing the relevant links. For ranking an algorithm has been applied which fetches more apt results for the user query.
  4. Zhao, Y.; Ma, F.; Xia, X.: Evaluating the coverage of entities in knowledge graphs behind general web search engines : Poster (2017) 0.13
    0.12563148 = product of:
      0.16750865 = sum of:
        0.041137107 = weight(_text_:web in 3854) [ClassicSimilarity], result of:
          0.041137107 = score(doc=3854,freq=4.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.25496176 = fieldWeight in 3854, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3854)
        0.08729243 = weight(_text_:search in 3854) [ClassicSimilarity], result of:
          0.08729243 = score(doc=3854,freq=14.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.5079997 = fieldWeight in 3854, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3854)
        0.03907912 = product of:
          0.07815824 = sum of:
            0.07815824 = weight(_text_:engine in 3854) [ClassicSimilarity], result of:
              0.07815824 = score(doc=3854,freq=2.0), product of:
                0.26447627 = queryWeight, product of:
                  5.349498 = idf(docFreq=570, maxDocs=44218)
                  0.049439456 = queryNorm
                0.29552078 = fieldWeight in 3854, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.349498 = idf(docFreq=570, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3854)
          0.5 = coord(1/2)
      0.75 = coord(3/4)
    
    Abstract
    Web search engines, such as Google and Bing, are constantly employing results from knowledge organization and various visualization features to improve their search services. Knowledge graph, a large repository of structured knowledge represented by formal languages such as RDF (Resource Description Framework), is used to support entity search feature of Google and Bing (Demartini, 2016). When a user searchs for an entity, such as a person, an organization, or a place in Google or Bing, it is likely that a knowledge cardwill be presented on the right side bar of the search engine result pages (SERPs). For example, when a user searches the entity Benedict Cumberbatch on Google, the knowledge card will show the basic structured information about this person, including his date of birth, height, spouse, parents, and his movies, etc. The knowledge card, which is used to present the result of entity search, is generated from knowledge graphs. Therefore, the quality of knowledge graphs is essential to the performance of entity search. However, studies on the quality of knowledge graphs from the angle of entity coverage are scant in the literature. This study aims to investigate the coverage of entities of knowledge graphs behind Google and Bing.
  5. Mäkelä, E.; Hyvönen, E.; Saarela, S.; Vilfanen, K.: Application of ontology techniques to view-based semantic serach and browsing (2012) 0.12
    0.12073888 = product of:
      0.16098517 = sum of:
        0.03490599 = weight(_text_:web in 3264) [ClassicSimilarity], result of:
          0.03490599 = score(doc=3264,freq=2.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.21634221 = fieldWeight in 3264, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=3264)
        0.07918424 = weight(_text_:search in 3264) [ClassicSimilarity], result of:
          0.07918424 = score(doc=3264,freq=8.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.460814 = fieldWeight in 3264, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.046875 = fieldNorm(doc=3264)
        0.04689494 = product of:
          0.09378988 = sum of:
            0.09378988 = weight(_text_:engine in 3264) [ClassicSimilarity], result of:
              0.09378988 = score(doc=3264,freq=2.0), product of:
                0.26447627 = queryWeight, product of:
                  5.349498 = idf(docFreq=570, maxDocs=44218)
                  0.049439456 = queryNorm
                0.35462496 = fieldWeight in 3264, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.349498 = idf(docFreq=570, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3264)
          0.5 = coord(1/2)
      0.75 = coord(3/4)
    
    Abstract
    We scho how the beenfits of the view-based search method, developed within the information retrieval community, can be extended with ontology-based search, developed within the Semantic Web community, and with semantic recommendations. As a proof of the concept, we have implemented an ontology-and view-based search engine and recommendations system Ontogaotr for RDF(S) repositories. Ontogator is innovative in two ways. Firstly, the RDFS.based ontologies used for annotating metadata are used in the user interface to facilitate view-based information retrieval. The views provide the user with an overview of the repositorys contents and a vocabulary for expressing search queries. Secondlyy, a semantic browsing function is provided by a recommender system. This system enriches instance level metadata by ontologies and provides the user with links to semantically related relevant resources. The semantic linkage is specified in terms of logical rules. To illustrate and discuss the ideas, a deployed application of Ontogator to a photo repository of the Helsinki University Museum is presented.
  6. Sojka, P.; Liska, M.: ¬The art of mathematics retrieval (2011) 0.11
    0.110961385 = product of:
      0.22192277 = sum of:
        0.046190813 = weight(_text_:search in 3450) [ClassicSimilarity], result of:
          0.046190813 = score(doc=3450,freq=2.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.2688082 = fieldWeight in 3450, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3450)
        0.17573196 = sum of:
          0.10942154 = weight(_text_:engine in 3450) [ClassicSimilarity], result of:
            0.10942154 = score(doc=3450,freq=2.0), product of:
              0.26447627 = queryWeight, product of:
                5.349498 = idf(docFreq=570, maxDocs=44218)
                0.049439456 = queryNorm
              0.41372913 = fieldWeight in 3450, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                5.349498 = idf(docFreq=570, maxDocs=44218)
                0.0546875 = fieldNorm(doc=3450)
          0.06631042 = weight(_text_:22 in 3450) [ClassicSimilarity], result of:
            0.06631042 = score(doc=3450,freq=4.0), product of:
              0.17312855 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.049439456 = queryNorm
              0.38301262 = fieldWeight in 3450, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0546875 = fieldNorm(doc=3450)
      0.5 = coord(2/4)
    
    Abstract
    The design and architecture of MIaS (Math Indexer and Searcher), a system for mathematics retrieval is presented, and design decisions are discussed. We argue for an approach based on Presentation MathML using a similarity of math subformulae. The system was implemented as a math-aware search engine based on the state-ofthe-art system Apache Lucene. Scalability issues were checked against more than 400,000 arXiv documents with 158 million mathematical formulae. Almost three billion MathML subformulae were indexed using a Solr-compatible Lucene.
    Content
    Vgl.: DocEng2011, September 19-22, 2011, Mountain View, California, USA Copyright 2011 ACM 978-1-4503-0863-2/11/09
    Date
    22. 2.2017 13:00:42
  7. Müller, B.; Poley, C.; Pössel, J.; Hagelstein, A.; Gübitz, T.: LIVIVO - the vertical search engine for life sciences (2017) 0.07
    0.06804165 = product of:
      0.1360833 = sum of:
        0.08081709 = weight(_text_:search in 3368) [ClassicSimilarity], result of:
          0.08081709 = score(doc=3368,freq=12.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.47031635 = fieldWeight in 3368, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3368)
        0.05526622 = product of:
          0.11053244 = sum of:
            0.11053244 = weight(_text_:engine in 3368) [ClassicSimilarity], result of:
              0.11053244 = score(doc=3368,freq=4.0), product of:
                0.26447627 = queryWeight, product of:
                  5.349498 = idf(docFreq=570, maxDocs=44218)
                  0.049439456 = queryNorm
                0.41792953 = fieldWeight in 3368, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  5.349498 = idf(docFreq=570, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3368)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    The explosive growth of literature and data in the life sciences challenges researchers to keep track of current advancements in their disciplines. Novel approaches in the life science like the One Health paradigm require integrated methodologies in order to link and connect heterogeneous information from databases and literature resources. Current publications in the life sciences are increasingly characterized by the employment of trans-disciplinary methodologies comprising molecular and cell biology, genetics, genomic, epigenomic, transcriptional and proteomic high throughput technologies with data from humans, plants, and animals. The literature search engine LIVIVO empowers retrieval functionality by incorporating various literature resources from medicine, health, environment, agriculture and nutrition. LIVIVO is developed in-house by ZB MED - Information Centre for Life Sciences. It provides a user-friendly and usability-tested search interface with a corpus of 55 Million citations derived from 50 databases. Standardized application programming interfaces are available for data export and high throughput retrieval. The search functions allow for semantic retrieval with filtering options based on life science entities. The service oriented architecture of LIVIVO uses four different implementation layers to deliver search services. A Knowledge Environment is developed by ZB MED to deal with the heterogeneity of data as an integrative approach to model, store, and link semantic concepts within literature resources and databases. Future work will focus on the exploitation of life science ontologies and on the employment of NLP technologies in order to improve query expansion, filters in faceted search, and concept based relevancy rankings in LIVIVO.
  8. Bast, H.; Bäurle, F.; Buchhold, B.; Haussmann, E.: Broccoli: semantic full-text search at your fingertips (2012) 0.07
    0.066199325 = product of:
      0.13239865 = sum of:
        0.093319535 = weight(_text_:search in 704) [ClassicSimilarity], result of:
          0.093319535 = score(doc=704,freq=16.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.54307455 = fieldWeight in 704, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=704)
        0.03907912 = product of:
          0.07815824 = sum of:
            0.07815824 = weight(_text_:engine in 704) [ClassicSimilarity], result of:
              0.07815824 = score(doc=704,freq=2.0), product of:
                0.26447627 = queryWeight, product of:
                  5.349498 = idf(docFreq=570, maxDocs=44218)
                  0.049439456 = queryNorm
                0.29552078 = fieldWeight in 704, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.349498 = idf(docFreq=570, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=704)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    We present Broccoli, a fast and easy-to-use search engine forwhat we call semantic full-text search. Semantic full-textsearch combines the capabilities of standard full-text searchand ontology search. The search operates on four kinds ofobjects: ordinary words (e.g., edible), classes (e.g., plants), instances (e.g.,Broccoli), and relations (e.g., occurs-with or native-to). Queries are trees, where nodes are arbitrary bags of these objects, and arcs are relations. The user interface guides the user in incrementally constructing such trees by instant (search-as-you-type) suggestions of words, classes, instances, or relations that lead to good hits. Both standard full-text search and pure ontology search are included as special cases. In this paper, we describe the query language of Broccoli, a new kind of index that enables fast processing of queries from that language as well as fast query suggestion, the natural language processing required, and the user interface. We evaluated query times and result quality on the full version of the English Wikipedia (32 GB XML dump) combined with the YAGO ontology (26 million facts). We have implemented a fully functional prototype based on our ideas, see: http://broccoli.informatik.uni-freiburg.de.
  9. Wallis, R.; Isaac, A.; Charles, V.; Manguinhas, H.: Recommendations for the application of Schema.org to aggregated cultural heritage metadata to increase relevance and visibility to search engines : the case of Europeana (2017) 0.06
    0.057456337 = product of:
      0.114912674 = sum of:
        0.041137107 = weight(_text_:web in 3372) [ClassicSimilarity], result of:
          0.041137107 = score(doc=3372,freq=4.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.25496176 = fieldWeight in 3372, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3372)
        0.07377557 = weight(_text_:search in 3372) [ClassicSimilarity], result of:
          0.07377557 = score(doc=3372,freq=10.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.4293381 = fieldWeight in 3372, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3372)
      0.5 = coord(2/4)
    
    Abstract
    Europeana provides access to more than 54 million cultural heritage objects through its portal Europeana Collections. It is crucial for Europeana to be recognized by search engines as a trusted authoritative repository of cultural heritage objects. Indeed, even though its portal is the main entry point, most Europeana users come to it via search engines. Europeana Collections is fuelled by metadata describing cultural objects, represented in the Europeana Data Model (EDM). This paper presents the research and consequent recommendations for publishing Europeana metadata using the Schema.org vocabulary and best practices. Schema.org html embedded metadata to be consumed by search engines to power rich services (such as Google Knowledge Graph). Schema.org is an open and widely adopted initiative (used by over 12 million domains) backed by Google, Bing, Yahoo!, and Yandex, for sharing metadata across the web It underpins the emergence of new web techniques, such as so called Semantic SEO. Our research addressed the representation of the embedded metadata as part of the Europeana HTML pages and sitemaps so that the re-use of this data can be optimized. The practical objective of our work is to produce a Schema.org representation of Europeana resources described in EDM, being the richest as possible and tailored to Europeana's realities and user needs as well the search engines and their users.
  10. Stoykova, V.; Petkova, E.: Automatic extraction of mathematical terms for precalculus (2012) 0.05
    0.05045079 = product of:
      0.10090158 = sum of:
        0.046190813 = weight(_text_:search in 156) [ClassicSimilarity], result of:
          0.046190813 = score(doc=156,freq=2.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.2688082 = fieldWeight in 156, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0546875 = fieldNorm(doc=156)
        0.05471077 = product of:
          0.10942154 = sum of:
            0.10942154 = weight(_text_:engine in 156) [ClassicSimilarity], result of:
              0.10942154 = score(doc=156,freq=2.0), product of:
                0.26447627 = queryWeight, product of:
                  5.349498 = idf(docFreq=570, maxDocs=44218)
                  0.049439456 = queryNorm
                0.41372913 = fieldWeight in 156, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.349498 = idf(docFreq=570, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=156)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    In this work, we present the results of research for evaluating a methodology for extracting mathematical terms for precalculus using the techniques for semantically-oriented statistical search. We use the corpus-based approach and the combination of different statistically-based techniques for extracting keywords, collocations and co-occurrences incorporated in the Sketch Engine software. We evaluate the collocations candidate terms for the basic concept function(s) and approve the related methodology by precalculus domain conceptual terms definitions. Finally, we offer a conceptual terms hierarchical representation and discuss the results with respect to their possible applications.
  11. Hodson, H.: Google's fact-checking bots build vast knowledge bank (2014) 0.05
    0.04966541 = product of:
      0.09933082 = sum of:
        0.046541322 = weight(_text_:web in 1700) [ClassicSimilarity], result of:
          0.046541322 = score(doc=1700,freq=2.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.2884563 = fieldWeight in 1700, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0625 = fieldNorm(doc=1700)
        0.052789498 = weight(_text_:search in 1700) [ClassicSimilarity], result of:
          0.052789498 = score(doc=1700,freq=2.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.30720934 = fieldWeight in 1700, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0625 = fieldNorm(doc=1700)
      0.5 = coord(2/4)
    
    Abstract
    The search giant is automatically building Knowledge Vault, a massive database that could give us unprecedented access to the world's facts GOOGLE is building the largest store of knowledge in human history - and it's doing so without any human help. Instead, Knowledge Vault autonomously gathers and merges information from across the web into a single base of facts about the world, and the people and objects in it.
  12. Manguinhas, H.; Freire, N.; Machado, J.; Borbinha, J.: Supporting multilingual bibliographic resource discovery with Functional Requirements for Bibliographic Records (2012) 0.05
    0.049018458 = product of:
      0.098036915 = sum of:
        0.06504348 = weight(_text_:web in 133) [ClassicSimilarity], result of:
          0.06504348 = score(doc=133,freq=10.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.40312994 = fieldWeight in 133, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=133)
        0.032993436 = weight(_text_:search in 133) [ClassicSimilarity], result of:
          0.032993436 = score(doc=133,freq=2.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.19200584 = fieldWeight in 133, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=133)
      0.5 = coord(2/4)
    
    Abstract
    This paper describes an experiment exploring the hypothesis that innovative application of the Functional Require-ments for Bibliographic Records (FRBR) principles can complement traditional bibliographic resource discovery systems in order to improve the user experience. A specialized service was implemented that, when given a plain list of results from a regular online catalogue, was able to process, enrich and present that list in a more relevant way for the user. This service pre-processes the records of a traditional online catalogue in order to build a semantic structure following the FRBR model. The service also explores web search features that have been revolutionizing the way users conceptualize resource discovery, such as relevance ranking and metasearching. This work was developed in the context of the TELPlus project. We processed nearly one hundred thousand bibliographic and authority records, in multiple languages, and originating from twelve European na-tional libraries. This paper describes the architecture of the service and the main challenges faced, especially concerning the extraction and linking of the relevant FRBR entities from the bibliographic metadata produced by the libraries. The service was evaluated by end users, who filled out a questionnaire after using a traditional online catalogue and the new service, both with the same bibliographic collection. The analysis of the results supports the hypothesis that FRBR can be implemented for re-source discovery in a non-intrusive way, reusing the data of any existing traditional bibliographic system.
    Content
    Beitrag eines Schwerpunktthemas: Semantic Web and Reasoning for Cultural Heritage and Digital Libraries: Vgl.: http://www.semantic-web-journal.net/content/supporting-multilingual-bibliographic-resource-discovery-functional-requirements-bibliograph http://www.semantic-web-journal.net/sites/default/files/swj145_2.pdf.
    Source
    Semantic Web journal. 3(2012) no.1, S.3-21
  13. Wenige, L.; Ruhland, J.: Similarity-based knowledge graph queries for recommendation retrieval (2019) 0.05
    0.048521113 = product of:
      0.097042225 = sum of:
        0.050382458 = weight(_text_:web in 5864) [ClassicSimilarity], result of:
          0.050382458 = score(doc=5864,freq=6.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.3122631 = fieldWeight in 5864, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5864)
        0.046659768 = weight(_text_:search in 5864) [ClassicSimilarity], result of:
          0.046659768 = score(doc=5864,freq=4.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.27153727 = fieldWeight in 5864, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5864)
      0.5 = coord(2/4)
    
    Abstract
    Current retrieval and recommendation approaches rely on hard-wired data models. This hinders personalized cus-tomizations to meet information needs of users in a more flexible manner. Therefore, the paper investigates how similarity-basedretrieval strategies can be combined with graph queries to enable users or system providers to explore repositories in the LinkedOpen Data (LOD) cloud more thoroughly. For this purpose, we developed novel content-based recommendation approaches.They rely on concept annotations of Simple Knowledge Organization System (SKOS) vocabularies and a SPARQL-based querylanguage that facilitates advanced and personalized requests for openly available knowledge graphs. We have comprehensivelyevaluated the novel search strategies in several test cases and example application domains (i.e., travel search and multimediaretrieval). The results of the web-based online experiments showed that our approaches increase the recall and diversity of rec-ommendations or at least provide a competitive alternative strategy of resource access when conventional methods do not providehelpful suggestions. The findings may be of use for Linked Data-enabled recommender systems (LDRS) as well as for semanticsearch engines that can consume LOD resources. (PDF) Similarity-based knowledge graph queries for recommendation retrieval. Available from: https://www.researchgate.net/publication/333358714_Similarity-based_knowledge_graph_queries_for_recommendation_retrieval [accessed May 21 2020].
    Content
    Vgl.: https://www.researchgate.net/publication/333358714_Similarity-based_knowledge_graph_queries_for_recommendation_retrieval. Vgl. auch: http://semantic-web-journal.net/content/similarity-based-knowledge-graph-queries-recommendation-retrieval-1.
    Source
    Semantic Web. 10(2019) 6, S.1007-1037
  14. Wei, W.; Ram, S.: Utilizing sozial bookmarking tag space for Web content discovery : a social network analysis approach (2010) 0.05
    0.048103362 = product of:
      0.096206725 = sum of:
        0.06981198 = weight(_text_:web in 1) [ClassicSimilarity], result of:
          0.06981198 = score(doc=1,freq=18.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.43268442 = fieldWeight in 1, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=1)
        0.026394749 = weight(_text_:search in 1) [ClassicSimilarity], result of:
          0.026394749 = score(doc=1,freq=2.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.15360467 = fieldWeight in 1, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.03125 = fieldNorm(doc=1)
      0.5 = coord(2/4)
    
    Abstract
    Social bookmarking has gained popularity since the advent of Web 2.0. Keywords known as tags are created to annotate web content, and the resulting tag space composed of the tags, the resources, and the users arises as a new platform for web content discovery. Useful and interesting web resources can be located through searching and browsing based on tags, as well as following the user-user connections formed in the social bookmarking community. However, the effectiveness of tag-based search is limited due to the lack of explicitly represented semantics in the tag space. In addition, social connections between users are underused for web content discovery because of the inadequate social functions. In this research, we propose a comprehensive framework to reorganize the flat tag space into a hierarchical faceted model. We also studied the structure and properties of various networks emerging from the tag space for the purpose of more efficient web content discovery. The major research approach used in this research is social network analysis (SNA), together with methodologies employed in design science research. The contribution of our research includes: (i) a faceted model to categorize social bookmarking tags; (ii) a relationship ontology to represent the semantics of relationships between tags; (iii) heuristics to reorganize the flat tag space into a hierarchical faceted model using analysis of tag-tag co-occurrence networks; (iv) an implemented prototype system as proof-of-concept to validate the feasibility of the reorganization approach; (v) a set of evaluations of the social functions of the current networking features of social bookmarking and a series of recommendations as to how to improve the social functions to facilitate web content discovery.
    Content
    A Dissertation Submitted to the Faculty of the COMMITTEE ON BUSINESS ADMINISTRATION In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY WITH A MAJOR IN MANAGEMENT In the Graduate College THE UNIVERSITY OF ARIZONA. Vgl.: http://hdl.handle.net/10150/195123. Vgl. auch: https://www.semanticscholar.org/paper/Utilizing-social-bookmarking-tag-space-for-web-a-Ram-Wei/da9e7e5ee771008b741af7176d3f0d67128d1dca.
  15. Somers, J.: Torching the modern-day library of Alexandria : somewhere at Google there is a database containing 25 million books and nobody is allowed to read them. (2017) 0.05
    0.047296606 = product of:
      0.06306214 = sum of:
        0.023270661 = weight(_text_:web in 3608) [ClassicSimilarity], result of:
          0.023270661 = score(doc=3608,freq=2.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.14422815 = fieldWeight in 3608, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=3608)
        0.026394749 = weight(_text_:search in 3608) [ClassicSimilarity], result of:
          0.026394749 = score(doc=3608,freq=2.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.15360467 = fieldWeight in 3608, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.03125 = fieldNorm(doc=3608)
        0.013396727 = product of:
          0.026793454 = sum of:
            0.026793454 = weight(_text_:22 in 3608) [ClassicSimilarity], result of:
              0.026793454 = score(doc=3608,freq=2.0), product of:
                0.17312855 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049439456 = queryNorm
                0.15476047 = fieldWeight in 3608, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3608)
          0.5 = coord(1/2)
      0.75 = coord(3/4)
    
    Abstract
    You were going to get one-click access to the full text of nearly every book that's ever been published. Books still in print you'd have to pay for, but everything else-a collection slated to grow larger than the holdings at the Library of Congress, Harvard, the University of Michigan, at any of the great national libraries of Europe-would have been available for free at terminals that were going to be placed in every local library that wanted one. At the terminal you were going to be able to search tens of millions of books and read every page of any book you found. You'd be able to highlight passages and make annotations and share them; for the first time, you'd be able to pinpoint an idea somewhere inside the vastness of the printed record, and send somebody straight to it with a link. Books would become as instantly available, searchable, copy-pasteable-as alive in the digital world-as web pages. It was to be the realization of a long-held dream. "The universal library has been talked about for millennia," Richard Ovenden, the head of Oxford's Bodleian Libraries, has said. "It was possible to think in the Renaissance that you might be able to amass the whole of published knowledge in a single room or a single institution." In the spring of 2011, it seemed we'd amassed it in a terminal small enough to fit on a desk. "This is a watershed event and can serve as a catalyst for the reinvention of education, research, and intellectual life," one eager observer wrote at the time. On March 22 of that year, however, the legal agreement that would have unlocked a century's worth of books and peppered the country with access terminals to a universal library was rejected under Rule 23(e)(2) of the Federal Rules of Civil Procedure by the U.S. District Court for the Southern District of New York. When the library at Alexandria burned it was said to be an "international catastrophe." When the most significant humanities project of our time was dismantled in court, the scholars, archivists, and librarians who'd had a hand in its undoing breathed a sigh of relief, for they believed, at the time, that they had narrowly averted disaster.
  16. Kollia, I.; Tzouvaras, V.; Drosopoulos, N.; Stamou, G.: ¬A systemic approach for effective semantic access to cultural content (2012) 0.05
    0.045585044 = product of:
      0.09117009 = sum of:
        0.05817665 = weight(_text_:web in 130) [ClassicSimilarity], result of:
          0.05817665 = score(doc=130,freq=8.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.36057037 = fieldWeight in 130, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=130)
        0.032993436 = weight(_text_:search in 130) [ClassicSimilarity], result of:
          0.032993436 = score(doc=130,freq=2.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.19200584 = fieldWeight in 130, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=130)
      0.5 = coord(2/4)
    
    Abstract
    A large on-going activity for digitization, dissemination and preservation of cultural heritage is taking place in Europe, United States and the world, which involves all types of cultural institutions, i.e., galleries, libraries, museums, archives and all types of cultural content. The development of Europeana, as a single point of access to European Cultural Heritage, has probably been the most important result of the activities in the field till now. Semantic interoperability, linked open data, user involvement and user generated content are key issues in these developments. This paper presents a system that provides content providers and users the ability to map, in an effective way, their own metadata schemas to common domain standards and the Europeana (ESE, EDM) data models. The system is currently largely used by many European research projects and the Europeana. Based on these mappings, semantic query answering techniques are proposed as a means for effective access to digital cultural heritage, providing users with content enrichment, linking of data based on their involvement and facilitating content search and retrieval. An experimental study is presented, involving content from national content aggregators, as well as thematic content aggregators and the Europeana, which illustrates the proposed system
    Content
    Beitrag eines Schwerpunktthemas: Semantic Web and Reasoning for Cultural Heritage and Digital Libraries: http://www.semantic-web-journal.net/content/systemic-approach-eff%0Bective-semantic-access-cultural-content http://www.semantic-web-journal.net/sites/default/files/swj147_3.pdf.
    Source
    Semantic Web journal. 3(2012) no.1, S.65-83
  17. Forero, D.; Peterson, N.; Hamilton, A.: Building an institutional author search tool (2019) 0.04
    0.043457236 = product of:
      0.08691447 = sum of:
        0.04072366 = weight(_text_:web in 5441) [ClassicSimilarity], result of:
          0.04072366 = score(doc=5441,freq=2.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.25239927 = fieldWeight in 5441, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5441)
        0.046190813 = weight(_text_:search in 5441) [ClassicSimilarity], result of:
          0.046190813 = score(doc=5441,freq=2.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.2688082 = fieldWeight in 5441, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5441)
      0.5 = coord(2/4)
    
    Abstract
    Ability to collect time-specific lists of faculty publications has become increasingly important for academic departments. At OHSU publication lists had been retrieved manually by a librarian who conducted literature searches in bibliographic databases. These searches were complicated and time consuming, and the results were large and difficult to assess for accuracy. The OHSU library has built an open web page that allows novices to make very sophisticated institution-specific queries. The tool frees up library staff, provides users with an easy way of retrieving reliable local publication information from PubMed, and gives an opportunity for more sophisticated users to modify the algorithm or dive into the data to better understand nuances from a strong jumping off point.
  18. Assem, M. van: Converting and integrating vocabularies for the Semantic Web (2010) 0.04
    0.041697998 = product of:
      0.083395995 = sum of:
        0.057001244 = weight(_text_:web in 4639) [ClassicSimilarity], result of:
          0.057001244 = score(doc=4639,freq=12.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.35328537 = fieldWeight in 4639, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=4639)
        0.026394749 = weight(_text_:search in 4639) [ClassicSimilarity], result of:
          0.026394749 = score(doc=4639,freq=2.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.15360467 = fieldWeight in 4639, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.03125 = fieldNorm(doc=4639)
      0.5 = coord(2/4)
    
    Abstract
    This thesis focuses on conversion of vocabularies for representation and integration of collections on the Semantic Web. A secondary focus is how to represent metadata schemas (RDF Schemas representing metadata element sets) such that they interoperate with vocabularies. The primary domain in which we operate is that of cultural heritage collections. The background worldview in which a solution is sought is that of the Semantic Web research paradigmwith its associated theories, methods, tools and use cases. In other words, we assume the SemanticWeb is in principle able to provide the context to realize interoperable collections. Interoperability is dependent on the interplay between representations and the applications that use them. We mean applications in the widest sense, such as "search" and "annotation". These applications or tasks are often present in software applications, such as the E-Culture application. It is therefore necessary that applications requirements on the vocabulary representation are met. This leads us to formulate the following problem statement: HOW CAN EXISTING VOCABULARIES BE MADE AVAILABLE TO SEMANTIC WEB APPLICATIONS?
    We refine the problem statement into three research questions. The first two focus on the problem of conversion of a vocabulary to a Semantic Web representation from its original format. Conversion of a vocabulary to a representation in a Semantic Web language is necessary to make the vocabulary available to SemanticWeb applications. In the last question we focus on integration of collection metadata schemas in a way that allows for vocabulary representations as produced by our methods. Academisch proefschrift ter verkrijging van de graad Doctor aan de Vrije Universiteit Amsterdam, Dutch Research School for Information and Knowledge Systems.
  19. Putkey, T.: Using SKOS to express faceted classification on the Semantic Web (2011) 0.04
    0.039214764 = product of:
      0.07842953 = sum of:
        0.05203478 = weight(_text_:web in 311) [ClassicSimilarity], result of:
          0.05203478 = score(doc=311,freq=10.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.32250395 = fieldWeight in 311, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=311)
        0.026394749 = weight(_text_:search in 311) [ClassicSimilarity], result of:
          0.026394749 = score(doc=311,freq=2.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.15360467 = fieldWeight in 311, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.03125 = fieldNorm(doc=311)
      0.5 = coord(2/4)
    
    Abstract
    This paper looks at Simple Knowledge Organization System (SKOS) to investigate how a faceted classification can be expressed in RDF and shared on the Semantic Web. Statement of the Problem Faceted classification outlines facets as well as subfacets and facet values. Hierarchical relationships and associative relationships are established in a faceted classification. RDF is used to describe how a specific URI has a relationship to a facet value. Not only does RDF decompose "information into pieces," but by incorporating facet values RDF also given the URI the hierarchical and associative relationships expressed in the faceted classification. Combining faceted classification and RDF creates more knowledge than if the two stood alone. An application understands the subjectpredicate-object relationship in RDF and can display hierarchical and associative relationships based on the object (facet) value. This paper continues to investigate if the above idea is indeed useful, used, and applicable. If so, how can a faceted classification be expressed in RDF? What would this expression look like? Literature Review This paper used the same articles as the paper A Survey of Faceted Classification: History, Uses, Drawbacks and the Semantic Web (Putkey, 2010). In that paper, appropriate resources were discovered by searching in various databases for "faceted classification" and "faceted search," either in the descriptor or title fields. Citations were also followed to find more articles as well as searching the Internet for the same terms. To retrieve the documents about RDF, searches combined "faceted classification" and "RDF, " looking for these words in either the descriptor or title.
    Methodology Based on information from research papers, more research was done on SKOS and examples of SKOS and shared faceted classifications in the Semantic Web and about SKOS and how to express SKOS in RDF/XML. Once confident with these ideas, the author used a faceted taxonomy created in a Vocabulary Design class and encoded it using SKOS. Instead of writing RDF in a program such as Notepad, a thesaurus tool was used to create the taxonomy according to SKOS standards and then export the thesaurus in RDF/XML format. These processes and tools are then analyzed. Results The initial statement of the problem was simply an extension of the survey paper done earlier in this class. To continue on with the research, more research was done into SKOS - a standard for expressing thesauri, taxonomies and faceted classifications so they can be shared on the semantic web.
  20. Zanibbi, R.; Yuan, B.: Keyword and image-based retrieval for mathematical expressions (2011) 0.04
    0.038043402 = product of:
      0.076086804 = sum of:
        0.055991717 = weight(_text_:search in 3449) [ClassicSimilarity], result of:
          0.055991717 = score(doc=3449,freq=4.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.3258447 = fieldWeight in 3449, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.046875 = fieldNorm(doc=3449)
        0.02009509 = product of:
          0.04019018 = sum of:
            0.04019018 = weight(_text_:22 in 3449) [ClassicSimilarity], result of:
              0.04019018 = score(doc=3449,freq=2.0), product of:
                0.17312855 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049439456 = queryNorm
                0.23214069 = fieldWeight in 3449, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3449)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Two new methods for retrieving mathematical expressions using conventional keyword search and expression images are presented. An expression-level TF-IDF (term frequency-inverse document frequency) approach is used for keyword search, where queries and indexed expressions are represented by keywords taken from LATEX strings. TF-IDF is computed at the level of individual expressions rather than documents to increase the precision of matching. The second retrieval technique is a form of Content-Base Image Retrieval (CBIR). Expressions are segmented into connected components, and then components in the query expression and each expression in the collection are matched using contour and density features, aspect ratios, and relative positions. In an experiment using ten randomly sampled queries from a corpus of over 22,000 expressions, precision-at-k (k= 20) for the keyword-based approach was higher (keyword: µ= 84.0,s= 19.0, image-based:µ= 32.0,s= 30.7), but for a few of the queries better results were obtained using a combination of the two techniques.
    Date
    22. 2.2017 12:53:49

Languages

  • e 82
  • d 40
  • f 2
  • i 2
  • a 1
  • el 1
  • es 1
  • More… Less…