Search (9 results, page 1 of 1)

  • × type_ss:"el"
  • × type_ss:"x"
  1. Shala, E.: ¬Die Autonomie des Menschen und der Maschine : gegenwärtige Definitionen von Autonomie zwischen philosophischem Hintergrund und technologischer Umsetzbarkeit (2014) 0.22
    0.22130911 = product of:
      0.44261822 = sum of:
        0.044261824 = product of:
          0.13278547 = sum of:
            0.13278547 = weight(_text_:3a in 4388) [ClassicSimilarity], result of:
              0.13278547 = score(doc=4388,freq=2.0), product of:
                0.28351858 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.033441637 = queryNorm
                0.46834838 = fieldWeight in 4388, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4388)
          0.33333334 = coord(1/3)
        0.13278547 = weight(_text_:2f in 4388) [ClassicSimilarity], result of:
          0.13278547 = score(doc=4388,freq=2.0), product of:
            0.28351858 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.033441637 = queryNorm
            0.46834838 = fieldWeight in 4388, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4388)
        0.13278547 = weight(_text_:2f in 4388) [ClassicSimilarity], result of:
          0.13278547 = score(doc=4388,freq=2.0), product of:
            0.28351858 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.033441637 = queryNorm
            0.46834838 = fieldWeight in 4388, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4388)
        0.13278547 = weight(_text_:2f in 4388) [ClassicSimilarity], result of:
          0.13278547 = score(doc=4388,freq=2.0), product of:
            0.28351858 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.033441637 = queryNorm
            0.46834838 = fieldWeight in 4388, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4388)
      0.5 = coord(4/8)
    
    Footnote
    Vgl. unter: https://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=2ahUKEwizweHljdbcAhVS16QKHXcFD9QQFjABegQICRAB&url=https%3A%2F%2Fwww.researchgate.net%2Fpublication%2F271200105_Die_Autonomie_des_Menschen_und_der_Maschine_-_gegenwartige_Definitionen_von_Autonomie_zwischen_philosophischem_Hintergrund_und_technologischer_Umsetzbarkeit_Redigierte_Version_der_Magisterarbeit_Karls&usg=AOvVaw06orrdJmFF2xbCCp_hL26q.
  2. Wachsmann, L.: Entwurf und Implementierung eines Modells zur Visualisierung von OWL-Properties als Protégé-PlugIn mit Layoutalgorithmen aus Graphviz (2008) 0.02
    0.018086007 = product of:
      0.14468805 = sum of:
        0.14468805 = weight(_text_:ontologie in 4173) [ClassicSimilarity], result of:
          0.14468805 = score(doc=4173,freq=2.0), product of:
            0.2339713 = queryWeight, product of:
              6.996407 = idf(docFreq=109, maxDocs=44218)
              0.033441637 = queryNorm
            0.6184009 = fieldWeight in 4173, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              6.996407 = idf(docFreq=109, maxDocs=44218)
              0.0625 = fieldNorm(doc=4173)
      0.125 = coord(1/8)
    
    Abstract
    Diese Diplomarbeit beschäftigt sich mit der Erstellung eines PlugIns für den Ontologie-Editor Protégé. Das PlugIn visualisiert Objekt-Properties als Verknüpfungen zwischen zwei OWL-Klassen. Als Ausgangspunkt für die Entwicklung dient das PlugIn OWLViz, das Vererbungshierarchien von OWL-Klassen als Graphen darstellt. Die Platzierung der Knoten und Kanten des Graphen wird von Algorithmen der Programmbibliothek Graphviz vorgenommen.
  3. Kara, S.: ¬An ontology-based retrieval system using semantic indexing (2012) 0.01
    0.011734625 = product of:
      0.093877 = sum of:
        0.093877 = weight(_text_:semantic in 3829) [ClassicSimilarity], result of:
          0.093877 = score(doc=3829,freq=12.0), product of:
            0.13904566 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.033441637 = queryNorm
            0.67515236 = fieldWeight in 3829, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.046875 = fieldNorm(doc=3829)
      0.125 = coord(1/8)
    
    Abstract
    In this thesis, we present an ontology-based information extraction and retrieval system and its application to soccer domain. In general, we deal with three issues in semantic search, namely, usability, scalability and retrieval performance. We propose a keyword-based semantic retrieval approach. The performance of the system is improved considerably using domain-specific information extraction, inference and rules. Scalability is achieved by adapting a semantic indexing approach. The system is implemented using the state-of-the-art technologies in SemanticWeb and its performance is evaluated against traditional systems as well as the query expansion methods. Furthermore, a detailed evaluation is provided to observe the performance gain due to domain-specific information extraction and inference. Finally, we show how we use semantic indexing to solve simple structural ambiguities.
    Theme
    Semantic Web
  4. Hüsken, P.: Information Retrieval im Semantic Web (2006) 0.01
    0.009581281 = product of:
      0.07665025 = sum of:
        0.07665025 = weight(_text_:semantic in 4333) [ClassicSimilarity], result of:
          0.07665025 = score(doc=4333,freq=8.0), product of:
            0.13904566 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.033441637 = queryNorm
            0.5512596 = fieldWeight in 4333, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.046875 = fieldNorm(doc=4333)
      0.125 = coord(1/8)
    
    Abstract
    Das Semantic Web bezeichnet ein erweitertes World Wide Web (WWW), das die Bedeutung von präsentierten Inhalten in neuen standardisierten Sprachen wie RDF Schema und OWL modelliert. Diese Arbeit befasst sich mit dem Aspekt des Information Retrieval, d.h. es wird untersucht, in wie weit Methoden der Informationssuche sich auf modelliertes Wissen übertragen lassen. Die kennzeichnenden Merkmale von IR-Systemen wie vage Anfragen sowie die Unterstützung unsicheren Wissens werden im Kontext des Semantic Web behandelt. Im Fokus steht die Suche nach Fakten innerhalb einer Wissensdomäne, die entweder explizit modelliert sind oder implizit durch die Anwendung von Inferenz abgeleitet werden können. Aufbauend auf der an der Universität Duisburg-Essen entwickelten Retrievalmaschine PIRE wird die Anwendung unsicherer Inferenz mit probabilistischer Prädikatenlogik (pDatalog) implementiert.
    Theme
    Semantic Web
  5. Li, Z.: ¬A domain specific search engine with explicit document relations (2013) 0.01
    0.007984401 = product of:
      0.063875206 = sum of:
        0.063875206 = weight(_text_:semantic in 1210) [ClassicSimilarity], result of:
          0.063875206 = score(doc=1210,freq=8.0), product of:
            0.13904566 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.033441637 = queryNorm
            0.45938298 = fieldWeight in 1210, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1210)
      0.125 = coord(1/8)
    
    Abstract
    The current web consists of documents that are highly heterogeneous and hard for machines to understand. The Semantic Web is a progressive movement of the Word Wide Web, aiming at converting the current web of unstructured documents to the web of data. In the Semantic Web, web documents are annotated with metadata using standardized ontology language. These annotated documents are directly processable by machines and it highly improves their usability and usefulness. In Ericsson, similar problems occur. There are massive documents being created with well-defined structures. Though these documents are about domain specific knowledge and can have rich relations, they are currently managed by a traditional search engine, which ignores the rich domain specific information and presents few data to users. Motivated by the Semantic Web, we aim to find standard ways to process these documents, extract rich domain specific information and annotate these data to documents with formal markup languages. We propose this project to develop a domain specific search engine for processing different documents and building explicit relations for them. This research project consists of the three main focuses: examining different domain specific documents and finding ways to extract their metadata; integrating a text search engine with an ontology server; exploring novel ways to build relations for documents. We implement this system and demonstrate its functions. As a prototype, the system provides required features and will be extended in the future.
    Theme
    Semantic Web
  6. Styltsvig, H.B.: Ontology-based information retrieval (2006) 0.01
    0.0063875206 = product of:
      0.051100165 = sum of:
        0.051100165 = weight(_text_:semantic in 1154) [ClassicSimilarity], result of:
          0.051100165 = score(doc=1154,freq=8.0), product of:
            0.13904566 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.033441637 = queryNorm
            0.36750638 = fieldWeight in 1154, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.03125 = fieldNorm(doc=1154)
      0.125 = coord(1/8)
    
    Abstract
    In this thesis, we will present methods for introducing ontologies in information retrieval. The main hypothesis is that the inclusion of conceptual knowledge such as ontologies in the information retrieval process can contribute to the solution of major problems currently found in information retrieval. This utilization of ontologies has a number of challenges. Our focus is on the use of similarity measures derived from the knowledge about relations between concepts in ontologies, the recognition of semantic information in texts and the mapping of this knowledge into the ontologies in use, as well as how to fuse together the ideas of ontological similarity and ontological indexing into a realistic information retrieval scenario. To achieve the recognition of semantic knowledge in a text, shallow natural language processing is used during indexing that reveals knowledge to the level of noun phrases. Furthermore, we briefly cover the identification of semantic relations inside and between noun phrases, as well as discuss which kind of problems are caused by an increase in compoundness with respect to the structure of concepts in the evaluation of queries. Measuring similarity between concepts based on distances in the structure of the ontology is discussed. In addition, a shared nodes measure is introduced and, based on a set of intuitive similarity properties, compared to a number of different measures. In this comparison the shared nodes measure appears to be superior, though more computationally complex. Some of the major problems of shared nodes which relate to the way relations differ with respect to the degree they bring the concepts they connect closer are discussed. A generalized measure called weighted shared nodes is introduced to deal with these problems. Finally, the utilization of concept similarity in query evaluation is discussed. A semantic expansion approach that incorporates concept similarity is introduced and a generalized fuzzy set retrieval model that applies expansion during query evaluation is presented. While not commonly used in present information retrieval systems, it appears that the fuzzy set model comprises the flexibility needed when generalizing to an ontology-based retrieval model and, with the introduction of a hierarchical fuzzy aggregation principle, compound concepts can be handled in a straightforward and natural manner.
  7. Nagy T., I.: Detecting multiword expressions and named entities in natural language texts (2014) 0.00
    0.004840286 = product of:
      0.038722288 = sum of:
        0.038722288 = weight(_text_:semantic in 1536) [ClassicSimilarity], result of:
          0.038722288 = score(doc=1536,freq=6.0), product of:
            0.13904566 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.033441637 = queryNorm
            0.27848613 = fieldWeight in 1536, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.02734375 = fieldNorm(doc=1536)
      0.125 = coord(1/8)
    
    Abstract
    Multiword expressions (MWEs) are lexical items that can be decomposed into single words and display lexical, syntactic, semantic, pragmatic and/or statistical idiosyncrasy (Sag et al., 2002; Kim, 2008; Calzolari et al., 2002). The proper treatment of multiword expressions such as rock 'n' roll and make a decision is essential for many natural language processing (NLP) applications like information extraction and retrieval, terminology extraction and machine translation, and it is important to identify multiword expressions in context. For example, in machine translation we must know that MWEs form one semantic unit, hence their parts should not be translated separately. For this, multiword expressions should be identified first in the text to be translated. The chief aim of this thesis is to develop machine learning-based approaches for the automatic detection of different types of multiword expressions in English and Hungarian natural language texts. In our investigations, we pay attention to the characteristics of different types of multiword expressions such as nominal compounds, multiword named entities and light verb constructions, and we apply novel methods to identify MWEs in raw texts. In the thesis it will be demonstrated that nominal compounds and multiword amed entities may require a similar approach for their automatic detection as they behave in the same way from a linguistic point of view. Furthermore, it will be shown that the automatic detection of light verb constructions can be carried out using two effective machine learning-based approaches.
    In this thesis, we focused on the automatic detection of multiword expressions in natural language texts. On the basis of the main contributions, we can argue that: - Supervised machine learning methods can be successfully applied for the automatic detection of different types of multiword expressions in natural language texts. - Machine learning-based multiword expression detection can be successfully carried out for English as well as for Hungarian. - Our supervised machine learning-based model was successfully applied to the automatic detection of nominal compounds from English raw texts. - We developed a Wikipedia-based dictionary labeling method to automatically detect English nominal compounds. - A prior knowledge of nominal compounds can enhance Named Entity Recognition, while previously identified named entities can assist the nominal compound identification process. - The machine learning-based method can also provide acceptable results when it was trained on an automatically generated silver standard corpus. - As named entities form one semantic unit and may consist of more than one word and function as a noun, we can treat them in a similar way to nominal compounds. - Our sequence labelling-based tool can be successfully applied for identifying verbal light verb constructions in two typologically different languages, namely English and Hungarian. - Domain adaptation techniques may help diminish the distance between domains in the automatic detection of light verb constructions. - Our syntax-based method can be successfully applied for the full-coverage identification of light verb constructions. As a first step, a data-driven candidate extraction method can be utilized. After, a machine learning approach that makes use of an extended and rich feature set selects LVCs among extracted candidates. - When a precise syntactic parser is available for the actual domain, the full-coverage identification can be performed better. In other cases, the usage of the sequence labeling method is recommended.
  8. Vocht, L. De: Exploring semantic relationships in the Web of Data : Semantische relaties verkennen in data op het web (2017) 0.00
    0.004463416 = product of:
      0.03570733 = sum of:
        0.03570733 = weight(_text_:semantic in 4232) [ClassicSimilarity], result of:
          0.03570733 = score(doc=4232,freq=10.0), product of:
            0.13904566 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.033441637 = queryNorm
            0.25680292 = fieldWeight in 4232, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.01953125 = fieldNorm(doc=4232)
      0.125 = coord(1/8)
    
    Abstract
    This PhD-thesis describes how to effectively explore linked data on the Web. The main focus is on scenarios where users want to discover relationships between resources rather than finding out more about something specific. Searching for a specific document or piece of information fits in the theoretical framework of information retrieval and is associated with exploratory search. Exploratory search goes beyond 'looking up something' when users are seeking more detailed understanding, further investigation or navigation of the initial search results. The ideas behind exploratory search and querying linked data merge when it comes to the way knowledge is represented and indexed by machines - how data is structured and stored for optimal searchability. Queries and information should be aligned to facilitate that searches also reveal connections between results. This implies that they take into account the same semantic entities, relevant at that moment. To realize this, we research three techniques that are evaluated one by one in an experimental set-up to assess how well they succeed in their goals. In the end, the techniques are applied to a practical use case that focuses on forming a bridge between the Web and the use of digital libraries in scientific research. Our first technique focuses on the interactive visualization of search results. Linked data resources can be brought in relation with each other at will. This leads to complex and diverse graphs structures. Our technique facilitates navigation and supports a workflow starting from a broad overview on the data and allows narrowing down until the desired level of detail to then broaden again. To validate the flow, two visualizations where implemented and presented to test-users. The users judged the usability of the visualizations, how the visualizations fit in the workflow and to which degree their features seemed useful for the exploration of linked data.
    The ideas behind exploratory search and querying linked data merge when it comes to the way knowledge is represented and indexed by machines - how data is structured and stored for optimal searchability. eries and information should be aligned to facilitate that searches also reveal connections between results. This implies that they take into account the same semantic entities, relevant at that moment. To realize this, we research three techniques that are evaluated one by one in an experimental set-up to assess how well they succeed in their goals. In the end, the techniques are applied to a practical use case that focuses on forming a bridge between the Web and the use of digital libraries in scientific research.
    When we speak about finding relationships between resources, it is necessary to dive deeper in the structure. The graph structure of linked data where the semantics give meaning to the relationships between resources enable the execution of pathfinding algorithms. The assigned weights and heuristics are base components of such algorithms and ultimately define (the order) which resources are included in a path. These paths explain indirect connections between resources. Our third technique proposes an algorithm that optimizes the choice of resources in terms of serendipity. Some optimizations guard the consistence of candidate-paths where the coherence of consecutive connections is maximized to avoid trivial and too arbitrary paths. The implementation uses the A* algorithm, the de-facto reference when it comes to heuristically optimized minimal cost paths. The effectiveness of paths was measured based on common automatic metrics and surveys where the users could indicate their preference for paths, generated each time in a different way. Finally, all our techniques are applied to a use case about publications in digital libraries where they are aligned with information about scientific conferences and researchers. The application to this use case is a practical example because the different aspects of exploratory search come together. In fact, the techniques also evolved from the experiences when implementing the use case. Practical details about the semantic model are explained and the implementation of the search system is clarified module by module. The evaluation positions the result, a prototype of a tool to explore scientific publications, researchers and conferences next to some important alternatives.
    Theme
    Semantic Web
  9. Munzner, T.: Interactive visualization of large graphs and networks (2000) 0.00
    0.0031937603 = product of:
      0.025550082 = sum of:
        0.025550082 = weight(_text_:semantic in 4746) [ClassicSimilarity], result of:
          0.025550082 = score(doc=4746,freq=2.0), product of:
            0.13904566 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.033441637 = queryNorm
            0.18375319 = fieldWeight in 4746, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.03125 = fieldNorm(doc=4746)
      0.125 = coord(1/8)
    
    Abstract
    Many real-world domains can be represented as large node-link graphs: backbone Internet routers connect with 70,000 other hosts, mid-sized Web servers handle between 20,000 and 200,000 hyperlinked documents, and dictionaries contain millions of words defined in terms of each other. Computational manipulation of such large graphs is common, but previous tools for graph visualization have been limited to datasets of a few thousand nodes. Visual depictions of graphs and networks are external representations that exploit human visual processing to reduce the cognitive load of many tasks that require understanding of global or local structure. We assert that the two key advantages of computer-based systems for information visualization over traditional paper-based visual exposition are interactivity and scalability. We also argue that designing visualization software by taking the characteristics of a target user's task domain into account leads to systems that are more effective and scale to larger datasets than previous work. This thesis contains a detailed analysis of three specialized systems for the interactive exploration of large graphs, relating the intended tasks to the spatial layout and visual encoding choices. We present two novel algorithms for specialized layout and drawing that use quite different visual metaphors. The H3 system for visualizing the hyperlink structures of web sites scales to datasets of over 100,000 nodes by using a carefully chosen spanning tree as the layout backbone, 3D hyperbolic geometry for a Focus+Context view, and provides a fluid interactive experience through guaranteed frame rate drawing. The Constellation system features a highly specialized 2D layout intended to spatially encode domain-specific information for computational linguists checking the plausibility of a large semantic network created from dictionaries. The Planet Multicast system for displaying the tunnel topology of the Internet's multicast backbone provides a literal 3D geographic layout of arcs on a globe to help MBone maintainers find misconfigured long-distance tunnels. Each of these three systems provides a very different view of the graph structure, and we evaluate their efficacy for the intended task. We generalize these findings in our analysis of the importance of interactivity and specialization for graph visualization systems that are effective and scalable.