Search (43 results, page 1 of 3)

  • × type_ss:"el"
  • × year_i:[2020 TO 2030}
  1. Singh, A.; Sinha, U.; Sharma, D.k.: Semantic Web and data visualization (2020) 0.04
    0.04241117 = product of:
      0.1272335 = sum of:
        0.03853567 = weight(_text_:wide in 79) [ClassicSimilarity], result of:
          0.03853567 = score(doc=79,freq=2.0), product of:
            0.19679762 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.044416238 = queryNorm
            0.1958137 = fieldWeight in 79, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.03125 = fieldNorm(doc=79)
        0.08869784 = weight(_text_:web in 79) [ClassicSimilarity], result of:
          0.08869784 = score(doc=79,freq=36.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.6119082 = fieldWeight in 79, product of:
              6.0 = tf(freq=36.0), with freq of:
                36.0 = termFreq=36.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=79)
      0.33333334 = coord(2/6)
    
    Abstract
    With the terrific growth of data volume and data being produced every second on millions of devices across the globe, there is a desperate need to manage the unstructured data available on web pages efficiently. Semantic Web or also known as Web of Trust structures the scattered data on the Internet according to the needs of the user. It is an extension of the World Wide Web (WWW) which focuses on manipulating web data on behalf of Humans. Due to the ability of the Semantic Web to integrate data from disparate sources and hence makes it more user-friendly, it is an emerging trend. Tim Berners-Lee first introduced the term Semantic Web and since then it has come a long way to become a more intelligent and intuitive web. Data Visualization plays an essential role in explaining complex concepts in a universal manner through pictorial representation, and the Semantic Web helps in broadening the potential of Data Visualization and thus making it an appropriate combination. The objective of this chapter is to provide fundamental insights concerning the semantic web technologies and in addition to that it also elucidates the issues as well as the solutions regarding the semantic web. The purpose of this chapter is to highlight the semantic web architecture in detail while also comparing it with the traditional search system. It classifies the semantic web architecture into three major pillars i.e. RDF, Ontology, and XML. Moreover, it describes different semantic web tools used in the framework and technology. It attempts to illustrate different approaches of the semantic web search engines. Besides stating numerous challenges faced by the semantic web it also illustrates the solutions.
    Theme
    Semantic Web
  2. Rieger, F.: Lügende Computer (2023) 0.03
    0.02550099 = product of:
      0.07650297 = sum of:
        0.05243182 = weight(_text_:computer in 912) [ClassicSimilarity], result of:
          0.05243182 = score(doc=912,freq=2.0), product of:
            0.16231956 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.044416238 = queryNorm
            0.32301605 = fieldWeight in 912, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.0625 = fieldNorm(doc=912)
        0.024071148 = product of:
          0.048142295 = sum of:
            0.048142295 = weight(_text_:22 in 912) [ClassicSimilarity], result of:
              0.048142295 = score(doc=912,freq=2.0), product of:
                0.1555381 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044416238 = queryNorm
                0.30952093 = fieldWeight in 912, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=912)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Date
    16. 3.2023 19:22:55
  3. Tay, A.: ¬The next generation discovery citation indexes : a review of the landscape in 2020 (2020) 0.02
    0.024267554 = product of:
      0.07280266 = sum of:
        0.05174041 = weight(_text_:web in 40) [ClassicSimilarity], result of:
          0.05174041 = score(doc=40,freq=4.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.35694647 = fieldWeight in 40, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=40)
        0.021062255 = product of:
          0.04212451 = sum of:
            0.04212451 = weight(_text_:22 in 40) [ClassicSimilarity], result of:
              0.04212451 = score(doc=40,freq=2.0), product of:
                0.1555381 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044416238 = queryNorm
                0.2708308 = fieldWeight in 40, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=40)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    Conclusion There is a reason why Google Scholar and Web of Science/Scopus are kings of the hills in their various arenas. They have strong brand recogniton, a head start in development and a mass of eyeballs and users that leads to an almost virtious cycle of improvement. Competing against such well established competitors is not easy even when one has deep pockets (Microsoft) or a killer idea (scite). It will be interesting to see how the landscape will look like in 2030. Stay tuned for part II where I review each particular index.
    Date
    17.11.2020 12:22:59
    Object
    Web of Science
  4. Hudon, M.: ¬The status of knowledge organization in library and information science master's programs (2021) 0.02
    0.019239716 = product of:
      0.11543829 = sum of:
        0.11543829 = product of:
          0.23087658 = sum of:
            0.23087658 = weight(_text_:programs in 697) [ClassicSimilarity], result of:
              0.23087658 = score(doc=697,freq=8.0), product of:
                0.25748047 = queryWeight, product of:
                  5.79699 = idf(docFreq=364, maxDocs=44218)
                  0.044416238 = queryNorm
                0.89667606 = fieldWeight in 697, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  5.79699 = idf(docFreq=364, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=697)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Abstract
    The content of master's programs accredited by the American Library Association was examined to assess the status of knowledge organization (KO) as a subject in current training. Data collected show that KO remains very visible in a majority of programs, mainly in the form of required and electives courses focusing on descriptive cataloging, classification, and metadata. Observed tendencies include, however, the recent elimination of the required KO course in several programs, the reality that one third of KO electives listed in course catalogs have not been scheduled in the past three years, and the fact that two-thirds of those teaching KO specialize in other areas of information science.
  5. Chessum, K.; Haiming, L.; Frommholz, I.: ¬A study of search user interface design based on Hofstede's six cultural dimensions (2022) 0.01
    0.013107955 = product of:
      0.07864773 = sum of:
        0.07864773 = weight(_text_:computer in 856) [ClassicSimilarity], result of:
          0.07864773 = score(doc=856,freq=2.0), product of:
            0.16231956 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.044416238 = queryNorm
            0.48452407 = fieldWeight in 856, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.09375 = fieldNorm(doc=856)
      0.16666667 = coord(1/6)
    
    Source
    6th International Conference on Computer-Human Interaction Research and Applications, [https://www.researchgate.net/publication/364940444_A_Study_of_Search_User_Interface_Design_based_on_Hofstede's_Six_Cultural_Dimensions]
  6. DeSilva, J.M.; Traniello, J.F.A.; Claxton, A.G.; Fannin, L.D.: When and why did human brains decrease in size? : a new change-point analysis and insights from brain evolution in ants (2021) 0.01
    0.012642811 = product of:
      0.037928432 = sum of:
        0.028901752 = weight(_text_:wide in 405) [ClassicSimilarity], result of:
          0.028901752 = score(doc=405,freq=2.0), product of:
            0.19679762 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.044416238 = queryNorm
            0.14686027 = fieldWeight in 405, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0234375 = fieldNorm(doc=405)
        0.00902668 = product of:
          0.01805336 = sum of:
            0.01805336 = weight(_text_:22 in 405) [ClassicSimilarity], result of:
              0.01805336 = score(doc=405,freq=2.0), product of:
                0.1555381 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044416238 = queryNorm
                0.116070345 = fieldWeight in 405, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=405)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    Human brain size nearly quadrupled in the six million years since Homo last shared a common ancestor with chimpanzees, but human brains are thought to have decreased in volume since the end of the last Ice Age. The timing and reason for this decrease is enigmatic. Here we use change-point analysis to estimate the timing of changes in the rate of hominin brain evolution. We find that hominin brains experienced positive rate changes at 2.1 and 1.5 million years ago, coincident with the early evolution of Homo and technological innovations evident in the archeological record. But we also find that human brain size reduction was surprisingly recent, occurring in the last 3,000 years. Our dating does not support hypotheses concerning brain size reduction as a by-product of body size reduction, a result of a shift to an agricultural diet, or a consequence of self-domestication. We suggest our analysis supports the hypothesis that the recent decrease in brain size may instead result from the externalization of knowledge and advantages of group-level decision-making due in part to the advent of social systems of distributed cognition and the storage and sharing of information. Humans live in social groups in which multiple brains contribute to the emergence of collective intelligence. Although difficult to study in the deep history of Homo, the impacts of group size, social organization, collective intelligence and other potential selective forces on brain evolution can be elucidated using ants as models. The remarkable ecological diversity of ants and their species richness encompasses forms convergent in aspects of human sociality, including large group size, agrarian life histories, division of labor, and collective cognition. Ants provide a wide range of social systems to generate and test hypotheses concerning brain size enlargement or reduction and aid in interpreting patterns of brain evolution identified in humans. Although humans and ants represent very different routes in social and cognitive evolution, the insights ants offer can broadly inform us of the selective forces that influence brain size.
    Source
    Frontiers in ecology and evolution, 22 October 2021 [https://www.frontiersin.org/articles/10.3389/fevo.2021.742639/full]
  7. Ding, J.: Can data die? : why one of the Internet's oldest images lives on wirhout its subjects's consent (2021) 0.01
    0.01238374 = product of:
      0.03715122 = sum of:
        0.024084795 = weight(_text_:wide in 423) [ClassicSimilarity], result of:
          0.024084795 = score(doc=423,freq=2.0), product of:
            0.19679762 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.044416238 = queryNorm
            0.122383565 = fieldWeight in 423, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.01953125 = fieldNorm(doc=423)
        0.013066427 = weight(_text_:web in 423) [ClassicSimilarity], result of:
          0.013066427 = score(doc=423,freq=2.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.09014259 = fieldWeight in 423, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.01953125 = fieldNorm(doc=423)
      0.33333334 = coord(2/6)
    
    Abstract
    Lena Forsén, the real human behind the Lenna image, was first published in Playboy in 1972. Soon after, USC engineers searching for a suitable test image for their image processing research sought inspiration from the magazine. They deemed Lenna the right fit and scanned the image into digital, RGB existence. From here, the story of the image follows the story of the internet. Lenna was one of the first inhabitants of ARPANet, the internet's predecessor, and then the world wide web. While the image's reach was limited to a few research papers in the '70s and '80s, in 1991, Lenna was featured on the cover of an engineering journal alongside another popular test image, Peppers. This caught the attention of Playboy, which threatened a copyright infringement lawsuit. Engineers who had grown attached to Lenna fought back. Ultimately, they prevailed, and as a Playboy VP reflected on the drama: "We decided we should exploit this because it is a phenomenon." The Playboy controversy canonized Lenna in engineering folklore and prompted an explosion of conversation about the image. Image hits on the internet rose to a peak number in 1995.
  8. Frey, J.; Streitmatter, D.; Götz, F.; Hellmann, S.; Arndt, N.: DBpedia Archivo : a Web-Scale interface for ontology archiving under consumer-oriented aspects (2020) 0.01
    0.010561468 = product of:
      0.063368805 = sum of:
        0.063368805 = weight(_text_:web in 52) [ClassicSimilarity], result of:
          0.063368805 = score(doc=52,freq=6.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.43716836 = fieldWeight in 52, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=52)
      0.16666667 = coord(1/6)
    
    Abstract
    While thousands of ontologies exist on the web, a unified sys-tem for handling online ontologies - in particular with respect to discov-ery, versioning, access, quality-control, mappings - has not yet surfacedand users of ontologies struggle with many challenges. In this paper, wepresent an online ontology interface and augmented archive called DB-pedia Archivo, that discovers, crawls, versions and archives ontologies onthe DBpedia Databus. Based on this versioned crawl, different features,quality measures and, if possible, fixes are deployed to handle and sta-bilize the changes in the found ontologies at web-scale. A comparison toexisting approaches and ontology repositories is given.
  9. Advanced online media use (2023) 0.01
    0.009855317 = product of:
      0.059131898 = sum of:
        0.059131898 = weight(_text_:web in 954) [ClassicSimilarity], result of:
          0.059131898 = score(doc=954,freq=4.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.4079388 = fieldWeight in 954, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0625 = fieldNorm(doc=954)
      0.16666667 = coord(1/6)
    
    Content
    "1. Use a range of different media 2. Access paywalled media content 3. Use an advertising and tracking blocker 4. Use alternatives to Google Search 5. Use alternatives to YouTube 6. Use alternatives to Facebook and Twitter 7. Caution with Wikipedia 8. Web browser, email, and internet access 9. Access books and scientific papers 10. Access deleted web content"
  10. Dietz, K.: en.wikipedia.org > 6 Mio. Artikel (2020) 0.01
    0.009797884 = product of:
      0.0587873 = sum of:
        0.0587873 = product of:
          0.1763619 = sum of:
            0.1763619 = weight(_text_:3a in 5669) [ClassicSimilarity], result of:
              0.1763619 = score(doc=5669,freq=2.0), product of:
                0.37656134 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.044416238 = queryNorm
                0.46834838 = fieldWeight in 5669, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5669)
          0.33333334 = coord(1/3)
      0.16666667 = coord(1/6)
    
    Content
    "Die Englischsprachige Wikipedia verfügt jetzt über mehr als 6 Millionen Artikel. An zweiter Stelle kommt die deutschsprachige Wikipedia mit 2.3 Millionen Artikeln, an dritter Stelle steht die französischsprachige Wikipedia mit 2.1 Millionen Artikeln (via Researchbuzz: Firehose <https://rbfirehose.com/2020/01/24/techcrunch-wikipedia-now-has-more-than-6-million-articles-in-english/> und Techcrunch <https://techcrunch.com/2020/01/23/wikipedia-english-six-million-articles/?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+Techcrunch+%28TechCrunch%29&guccounter=1&guce_referrer=aHR0cHM6Ly9yYmZpcmVob3NlLmNvbS8yMDIwLzAxLzI0L3RlY2hjcnVuY2gtd2lraXBlZGlhLW5vdy1oYXMtbW9yZS10aGFuLTYtbWlsbGlvbi1hcnRpY2xlcy1pbi1lbmdsaXNoLw&guce_referrer_sig=AQAAAK0zHfjdDZ_spFZBF_z-zDjtL5iWvuKDumFTzm4HvQzkUfE2pLXQzGS6FGB_y-VISdMEsUSvkNsg2U_NWQ4lwWSvOo3jvXo1I3GtgHpP8exukVxYAnn5mJspqX50VHIWFADHhs5AerkRn3hMRtf_R3F1qmEbo8EROZXp328HMC-o>). 250120 via digithek ch = #fineBlog s.a.: Angesichts der Veröffentlichung des 6-millionsten Artikels vergangene Woche in der englischsprachigen Wikipedia hat die Community-Zeitungsseite "Wikipedia Signpost" ein Moratorium bei der Veröffentlichung von Unternehmensartikeln gefordert. Das sei kein Vorwurf gegen die Wikimedia Foundation, aber die derzeitigen Maßnahmen, um die Enzyklopädie gegen missbräuchliches undeklariertes Paid Editing zu schützen, funktionierten ganz klar nicht. *"Da die ehrenamtlichen Autoren derzeit von Werbung in Gestalt von Wikipedia-Artikeln überwältigt werden, und da die WMF nicht in der Lage zu sein scheint, dem irgendetwas entgegenzusetzen, wäre der einzige gangbare Weg für die Autoren, fürs erste die Neuanlage von Artikeln über Unternehmen zu untersagen"*, schreibt der Benutzer Smallbones in seinem Editorial <https://en.wikipedia.org/wiki/Wikipedia:Wikipedia_Signpost/2020-01-27/From_the_editor> zur heutigen Ausgabe."
  11. Franke, T.; Zoubir, M.: Technology for the people? : humanity as a compass for the digital transformation (2020) 0.01
    0.009633917 = product of:
      0.057803504 = sum of:
        0.057803504 = weight(_text_:wide in 830) [ClassicSimilarity], result of:
          0.057803504 = score(doc=830,freq=2.0), product of:
            0.19679762 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.044416238 = queryNorm
            0.29372054 = fieldWeight in 830, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.046875 = fieldNorm(doc=830)
      0.16666667 = coord(1/6)
    
    Abstract
    How do we define what technology is for humans? One perspective suggests that it is a tool enabling the use of valuable resources such as time, food, health and mobility. One could say that in its cultural history, humanity has developed a wide range of artefacts which enable the effective utilisation of these resources for the fulfilment of physiological, but also psychological, needs. This paper explores how this perspective may be used as an orientation for future technological innovation. Hence, the goal is to provide an accessible discussion of such a psychological perspective on technology development that could pave the way towards a truly human-centred digital transformation.
  12. Wolf, S.: Automating authority control processes (2020) 0.01
    0.009619858 = product of:
      0.057719145 = sum of:
        0.057719145 = product of:
          0.11543829 = sum of:
            0.11543829 = weight(_text_:programs in 5680) [ClassicSimilarity], result of:
              0.11543829 = score(doc=5680,freq=2.0), product of:
                0.25748047 = queryWeight, product of:
                  5.79699 = idf(docFreq=364, maxDocs=44218)
                  0.044416238 = queryNorm
                0.44833803 = fieldWeight in 5680, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.79699 = idf(docFreq=364, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5680)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Abstract
    Authority control is an important part of cataloging since it helps provide consistent access to names, titles, subjects, and genre/forms. There are a variety of methods for providing authority control, ranging from manual, time-consuming processes to automated processes. However, the automated processes often seem out of reach for small libraries when it comes to using a pricey vendor or expert cataloger. This paper introduces ideas on how to handle authority control using a variety of tools, both paid and free. The author describes how their library handles authority control; compares vendors and programs that can be used to provide varying levels of authority control; and demonstrates authority control using MarcEdit.
  13. Aydin, Ö.; Karaarslan, E.: OpenAI ChatGPT generated literature review: : digital twin in healthcare (2022) 0.01
    0.009082945 = product of:
      0.05449767 = sum of:
        0.05449767 = weight(_text_:wide in 851) [ClassicSimilarity], result of:
          0.05449767 = score(doc=851,freq=4.0), product of:
            0.19679762 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.044416238 = queryNorm
            0.2769224 = fieldWeight in 851, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.03125 = fieldNorm(doc=851)
      0.16666667 = coord(1/6)
    
    Abstract
    Literature review articles are essential to summarize the related work in the selected field. However, covering all related studies takes too much time and effort. This study questions how Artificial Intelligence can be used in this process. We used ChatGPT to create a literature review article to show the stage of the OpenAI ChatGPT artificial intelligence application. As the subject, the applications of Digital Twin in the health field were chosen. Abstracts of the last three years (2020, 2021 and 2022) papers were obtained from the keyword "Digital twin in healthcare" search results on Google Scholar and paraphrased by ChatGPT. Later on, we asked ChatGPT questions. The results are promising; however, the paraphrased parts had significant matches when checked with the Ithenticate tool. This article is the first attempt to show the compilation and expression of knowledge will be accelerated with the help of artificial intelligence. We are still at the beginning of such advances. The future academic publishing process will require less human effort, which in turn will allow academics to focus on their studies. In future studies, we will monitor citations to this study to evaluate the academic validity of the content produced by the ChatGPT. 1. Introduction OpenAI ChatGPT (ChatGPT, 2022) is a chatbot based on the OpenAI GPT-3 language model. It is designed to generate human-like text responses to user input in a conversational context. OpenAI ChatGPT is trained on a large dataset of human conversations and can be used to create responses to a wide range of topics and prompts. The chatbot can be used for customer service, content creation, and language translation tasks, creating replies in multiple languages. OpenAI ChatGPT is available through the OpenAI API, which allows developers to access and integrate the chatbot into their applications and systems. OpenAI ChatGPT is a variant of the GPT (Generative Pre-trained Transformer) language model developed by OpenAI. It is designed to generate human-like text, allowing it to engage in conversation with users naturally and intuitively. OpenAI ChatGPT is trained on a large dataset of human conversations, allowing it to understand and respond to a wide range of topics and contexts. It can be used in various applications, such as chatbots, customer service agents, and language translation systems. OpenAI ChatGPT is a state-of-the-art language model able to generate coherent and natural text that can be indistinguishable from text written by a human. As an artificial intelligence, ChatGPT may need help to change academic writing practices. However, it can provide information and guidance on ways to improve people's academic writing skills.
  14. Daquino, M.; Peroni, S.; Shotton, D.; Colavizza, G.; Ghavimi, B.; Lauscher, A.; Mayr, P.; Romanello, M.; Zumstein, P.: ¬The OpenCitations Data Model (2020) 0.01
    0.009052687 = product of:
      0.054316122 = sum of:
        0.054316122 = weight(_text_:web in 38) [ClassicSimilarity], result of:
          0.054316122 = score(doc=38,freq=6.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.37471575 = fieldWeight in 38, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=38)
      0.16666667 = coord(1/6)
    
    Abstract
    A variety of schemas and ontologies are currently used for the machine-readable description of bibliographic entities and citations. This diversity, and the reuse of the same ontology terms with different nuances, generates inconsistencies in data. Adoption of a single data model would facilitate data integration tasks regardless of the data supplier or context application. In this paper we present the OpenCitations Data Model (OCDM), a generic data model for describing bibliographic entities and citations, developed using Semantic Web technologies. We also evaluate the effective reusability of OCDM according to ontology evaluation practices, mention existing users of OCDM, and discuss the use and impact of OCDM in the wider open science community.
    Content
    Erschienen in: The Semantic Web - ISWC 2020, 19th International Semantic Web Conference, Athens, Greece, November 2-6, 2020, Proceedings, Part II. Vgl.: DOI: 10.1007/978-3-030-62466-8_28.
  15. Ogden, J.; Summers, E.; Walker, S.: Know(ing) Infrastructure : the wayback machine as object and instrument of digital research (2023) 0.01
    0.008710952 = product of:
      0.052265707 = sum of:
        0.052265707 = weight(_text_:web in 1084) [ClassicSimilarity], result of:
          0.052265707 = score(doc=1084,freq=8.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.36057037 = fieldWeight in 1084, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1084)
      0.16666667 = coord(1/6)
    
    Abstract
    From documenting human rights abuses to studying online advertising, web archives are increasingly positioned as critical resources for a broad range of scholarly Internet research agendas. In this article, we reflect on the motivations and methodological challenges of investigating the world's largest web archive, the Internet Archive's Wayback Machine (IAWM). Using a mixed methods approach, we report on a pilot project centred around documenting the inner workings of 'Save Page Now' (SPN) - an Internet Archive tool that allows users to initiate the creation and storage of 'snapshots' of web resources. By improving our understanding of SPN and its role in shaping the IAWM, this work examines how the public tool is being used to 'save the Web' and highlights the challenges of operationalising a study of the dynamic sociotechnical processes supporting this knowledge infrastructure. Inspired by existing Science and Technology Studies (STS) approaches, the paper charts our development of methodological interventions to support an interdisciplinary investigation of SPN, including: ethnographic methods, 'experimental blackbox tactics', data tracing, modelling and documentary research. We discuss the opportunities and limitations of our methodology when interfacing with issues associated with temporality, scale and visibility, as well as critically engage with our own positionality in the research process (in terms of expertise and access). We conclude with reflections on the implications of digital STS approaches for 'knowing infrastructure', where the use of these infrastructures is unavoidably intertwined with our ability to study the situated and material arrangements of their creation.
  16. Baines, D.; Elliott, R.J.: Defining misinformation, disinformation and malinformation : an urgent need for clarity during the COVID-19 infodemic (2020) 0.01
    0.008028265 = product of:
      0.04816959 = sum of:
        0.04816959 = weight(_text_:wide in 5853) [ClassicSimilarity], result of:
          0.04816959 = score(doc=5853,freq=2.0), product of:
            0.19679762 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.044416238 = queryNorm
            0.24476713 = fieldWeight in 5853, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5853)
      0.16666667 = coord(1/6)
    
    Abstract
    COVID-19 is an unprecedented global health crisis that will have immeasurable consequences for our economic and social well-being. Tedros Adhanom Ghebreyesus, the director general of the World Health Organization, stated "We're not just fighting an epidemic; we're fighting an infodemic". Currently, there is no robust scientific basis to the existing definitions of false information used in the fight against the COVID-19infodemic. The purpose of this paper is to demonstrate how the use of a novel taxonomy and related model (based upon a conceptual framework that synthesizes insights from information science, philosophy, media studies and politics) can produce new scientific definitions of mis-, dis- and malinformation. We undertake our analysis from the viewpoint of information systems research. The conceptual approach to defining mis-,dis- and malinformation can be applied to a wide range of empirical examples and, if applied properly, may prove useful in fighting the COVID-19 infodemic. In sum, our research suggests that: (i) analyzing all types of information is important in the battle against the COVID-19 infodemic; (ii) a scientific approach is required so that different methods are not used by different studies; (iii) "misinformation", as an umbrella term, can be confusing and should be dropped from use; (iv) clear, scientific definitions of information types will be needed going forward; (v) malinformation is an overlooked phenomenon involving reconfigurations of the truth.
  17. Tramullas, J.; Garrido-Picazo, P.; Sánchez-Casabón, A.I.: Use of Wikipedia categories on information retrieval research : a brief review (2020) 0.01
    0.0065539777 = product of:
      0.039323866 = sum of:
        0.039323866 = weight(_text_:computer in 5365) [ClassicSimilarity], result of:
          0.039323866 = score(doc=5365,freq=2.0), product of:
            0.16231956 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.044416238 = queryNorm
            0.24226204 = fieldWeight in 5365, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.046875 = fieldNorm(doc=5365)
      0.16666667 = coord(1/6)
    
    Abstract
    Wikipedia categories, a classification scheme built for organizing and describing Wikpedia articles, are being applied in computer science research. This paper adopts a systematic literature review approach, in order to identify different approaches and uses of Wikipedia categories in information retrieval research. Several types of work are identified, depending on the intrinsic study of the categories structure, or its use as a tool for the processing and analysis of other documentary corpus different to Wikipedia. Information retrieval is identified as one of the major areas of use, in particular its application in the refinement and improvement of search expressions, and the construction of textual corpus. However, the set of available works shows that in many cases research approaches applied and results obtained can be integrated into a comprehensive and inclusive concept of information retrieval.
  18. Kahlawi, A,: ¬An ontology driven ESCO LOD quality enhancement (2020) 0.01
    0.0065539777 = product of:
      0.039323866 = sum of:
        0.039323866 = weight(_text_:computer in 5959) [ClassicSimilarity], result of:
          0.039323866 = score(doc=5959,freq=2.0), product of:
            0.16231956 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.044416238 = queryNorm
            0.24226204 = fieldWeight in 5959, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.046875 = fieldNorm(doc=5959)
      0.16666667 = coord(1/6)
    
    Source
    International journal of advanced computer science and applications 11(2020) no.3
  19. Williams, B.: Dimensions & VOSViewer bibliometrics in the reference interview (2020) 0.01
    0.0060976665 = product of:
      0.036585998 = sum of:
        0.036585998 = weight(_text_:web in 5719) [ClassicSimilarity], result of:
          0.036585998 = score(doc=5719,freq=2.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.25239927 = fieldWeight in 5719, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5719)
      0.16666667 = coord(1/6)
    
    Abstract
    The VOSviewer software provides easy access to bibliometric mapping using data from Dimensions, Scopus and Web of Science. The properly formatted and structured citation data, and the ease in which it can be exported open up new avenues for use during citation searches and eference interviews. This paper details specific techniques for using advanced searches in Dimensions, exporting the citation data, and drawing insights from the maps produced in VOS Viewer. These search techniques and data export practices are fast and accurate enough to build into reference interviews for graduate students, faculty, and post-PhD researchers. The search results derived from them are accurate and allow a more comprehensive view of citation networks embedded in ordinary complex boolean searches.
  20. Frey, J.; Streitmatter, D.; Götz, F.; Hellmann, S.; Arndt, N.: DBpedia Archivo (2020) 0.01
    0.0060976665 = product of:
      0.036585998 = sum of:
        0.036585998 = weight(_text_:web in 53) [ClassicSimilarity], result of:
          0.036585998 = score(doc=53,freq=8.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.25239927 = fieldWeight in 53, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.02734375 = fieldNorm(doc=53)
      0.16666667 = coord(1/6)
    
    Content
    # Community action on individual ontologies We would like to call on all ontology maintainers and consumers to help us increase the average star rating of the web of ontologies by fixing and improving its ontologies. You can easily check an ontology at https://archivo.dbpedia.org/info. If you are an ontology maintainer just release a patched version - archivo will automatically pick it up 8 hours later. If you are a user of an ontology and want your consumed data to become FAIRer, please inform the ontology maintainer about the issues found with Archivo. The star rating is very basic and only requires fixing small things. However, theimpact on technical and legal usability can be immense.
    # Community action on all ontologies (quality, FAIRness, conformity) Archivo is extensible and allows contributions to give consumers a central place to encode their requirements. We envision fostering adherence to standards and strengthening incentives for publishers to build a better (FAIRer) web of ontologies. 1. SHACL (https://www.w3.org/TR/shacl/, co-edited by DBpedia's CTO D. Kontokostas) enables easy testing of ontologies. Archivo offers free SHACL continuous integration testing for ontologies. Anyone can implement their SHACL tests and add them to the SHACL library on Github. We believe that there are many synergies, i.e. SHACL tests for your ontology are helpful for others as well. 2. We are looking for ontology experts to join DBpedia and discuss further validation (e.g. stars) to increase FAIRness and quality of ontologies. We are forming a steering committee and also a PC for the upcoming Vocarnival at SEMANTiCS 2021. Please message hellmann@informatik.uni-leipzig.de <mailto:hellmann@informatik.uni-leipzig.de>if you would like to join. We would like to extend the Archivo platform with relevant visualisations, tests, editing aides, mapping management tools and quality checks.
    # How does Archivo work? Each week Archivo runs several discovery algorithms to scan for new ontologies. Once discovered Archivo checks them every 8 hours. When changes are detected, Archivo downloads and rates and archives the latest snapshot persistently on the DBpedia Databus. # Archivo's mission Archivo's mission is to improve FAIRness (findability, accessibility, interoperability, and reusability) of all available ontologies on the Semantic Web. Archivo is not a guideline, it is fully automated, machine-readable and enforces interoperability with its star rating. - Ontology developers can implement against Archivo until they reach more stars. The stars and tests are designed to guarantee the interoperability and fitness of the ontology. - Ontology users can better find, access and re-use ontologies. Snapshots are persisted in case the original is not reachable anymore adding a layer of reliability to the decentral web of ontologies.

Languages

  • e 22
  • d 21

Types

  • a 34
  • p 3