Search (603 results, page 31 of 31)

  • × type_ss:"el"
  1. Maurer, H.; Balke, T.; Kappe,, F.; Kulathuramaiyer, N.; Weber, S.; Zaka, B.: Report on dangers and opportunities posed by large search engines, particularly Google (2007) 0.00
    0.0014932671 = product of:
      0.007466336 = sum of:
        0.007466336 = product of:
          0.014932672 = sum of:
            0.014932672 = weight(_text_:data in 754) [ClassicSimilarity], result of:
              0.014932672 = score(doc=754,freq=2.0), product of:
                0.14247625 = queryWeight, product of:
                  3.1620505 = idf(docFreq=5088, maxDocs=44218)
                  0.04505818 = queryNorm
                0.10480815 = fieldWeight in 754, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1620505 = idf(docFreq=5088, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=754)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Abstract
    The preliminary intended and approved list was: Section 1: To concentrate on Google as virtual monopoly, and Google's reported support of Wikipedia. To find experimental evidence of this support or show that the reports are not more than rumours. Section 2: To address the copy-past syndrome with socio-cultural consequences associated with it. Section 3: To deal with plagiarism and IPR violations as two intertwined topics: how they affect various players (teachers and pupils in school; academia; corporations; governmental studies, etc.). To establish that not enough is done concerning these issues, partially due to just plain ignorance. We will propose some ways to alleviate the problem. Section 4: To discuss the usual tools to fight plagiarism and their shortcomings. Section 5: To propose ways to overcome most of above problems according to proposals by Maurer/Zaka. To examples, but to make it clear that do this more seriously a pilot project is necessary beyond this particular study. Section 6: To briefly analyze various views of plagiarism as it is quite different in different fields (journalism, engineering, architecture, painting, .) and to present a concept that avoids plagiarism from the very beginning. Section 7: To point out the many other dangers of Google or Google-like undertakings: opportunistic ranking, analysis of data as window into commercial future. Section 8: To outline the need of new international laws. Section 9: To mention the feeble European attempts to fight Google, despite Google's growing power. Section 10. To argue that there is no way to catch up with Google in a frontal attack.
  2. Dobratz, S.; Neuroth, H.: nestor: Network of Expertise in long-term STOrage of digital Resources : a digital preservation initiative for Germany (2004) 0.00
    0.0014932671 = product of:
      0.007466336 = sum of:
        0.007466336 = product of:
          0.014932672 = sum of:
            0.014932672 = weight(_text_:data in 1195) [ClassicSimilarity], result of:
              0.014932672 = score(doc=1195,freq=2.0), product of:
                0.14247625 = queryWeight, product of:
                  3.1620505 = idf(docFreq=5088, maxDocs=44218)
                  0.04505818 = queryNorm
                0.10480815 = fieldWeight in 1195, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1620505 = idf(docFreq=5088, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=1195)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Abstract
    As follow up, in 2002 the nestor long-term archiving working group provided an initial spark towards planning and organising coordinated activities concerning the long-term preservation and long-term availability of digital documents in Germany. This resulted in a workshop, held 29 - 30 October 2002, where major tasks were discussed. Influenced by the demands and progress of the nestor network, the participants reached agreement to start work on application-oriented projects and to address the following topics: * Overlapping problems o Collection and preservation of digital objects (selection criteria, preservation policy) o Definition of criteria for trusted repositories o Creation of models of cooperation, etc. * Digital objects production process o Analysis of potential conflicts between production and long-term preservation o Documentation of existing document models and recommendations for standards models to be used for long-term preservation o Identification systems for digital objects, etc. * Transfer of digital objects o Object data and metadata o Transfer protocols and interoperability o Handling of different document types, e.g. dynamic publications, etc. * Long-term preservation of digital objects o Design and prototype implementation of depot systems for digital objects (OAIS was chosen to be the best functional model.) o Authenticity o Functional requirements on user interfaces of an depot system o Identification systems for digital objects, etc. At the end of the workshop, participants decided to establish a permanent distributed infrastructure for long-term preservation and long-term accessibility of digital resources in Germany comparable, e.g., to the Digital Preservation Coalition in the UK. The initial phase, nestor, is now being set up by the above-mentioned 3-year funding project.
  3. OWLED 2009; OWL: Experiences and Directions, Sixth International Workshop, Chantilly, Virginia, USA, 23-24 October 2009, Co-located with ISWC 2009. (2009) 0.00
    0.0014932671 = product of:
      0.007466336 = sum of:
        0.007466336 = product of:
          0.014932672 = sum of:
            0.014932672 = weight(_text_:data in 3391) [ClassicSimilarity], result of:
              0.014932672 = score(doc=3391,freq=2.0), product of:
                0.14247625 = queryWeight, product of:
                  3.1620505 = idf(docFreq=5088, maxDocs=44218)
                  0.04505818 = queryNorm
                0.10480815 = fieldWeight in 3391, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1620505 = idf(docFreq=5088, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=3391)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Content
    Short Papers * A Database Backend for OWL, Jörg Henss, Joachim Kleb and Stephan Grimm. * Unifying SysML and OWL, Henson Graves. * The OWLlink Protocol, Thorsten Liebig, Marko Luther and Olaf Noppens. * A Reasoning Broker Framework for OWL, Juergen Bock, Tuvshintur Tserendorj, Yongchun Xu, Jens Wissmann and Stephan Grimm. * Change Representation For OWL 2 Ontologies, Raul Palma, Peter Haase, Oscar Corcho and Asunción Gómez-Pérez. * Practical Aspects of Query Rewriting for OWL 2, Héctor Pérez-Urbina, Ian Horrocks and Boris Motik. * CSage: Use of a Configurable Semantically Attributed Graph Editor as Framework for Editing and Visualization, Lawrence Levin. * A Conformance Test Suite for the OWL 2 RL/RDF Rules Language and the OWL 2 RDF-Based Semantics, Michael Schneider and Kai Mainzer. * Improving the Data Quality of Relational Databases using OBDA and OWL 2 QL, Olivier Cure. * Temporal Classes and OWL, Natalya Keberle. * Using Ontologies for Medical Image Retrieval - An Experiment, Jasmin Opitz, Bijan Parsia and Ulrike Sattler. * Task Representation and Retrieval in an Ontology-Guided Modelling System, Yuan Ren, Jens Lemcke, Andreas Friesen, Tirdad Rahmani, Srdjan Zivkovic, Boris Gregorcic, Andreas Bartho, Yuting Zhao and Jeff Z. Pan. * A platform for reasoning with OWL-EL knowledge bases in a Peer-to-Peer environment, Alexander De Leon and Michel Dumontier. * Axiomé: a Tool for the Elicitation and Management of SWRL Rules, Saeed Hassanpour, Martin O'Connor and Amar Das. * SQWRL: A Query Language for OWL, Martin O'Connor and Amar Das. * Classifying ELH Ontologies In SQL Databases, Vincent Delaitre and Yevgeny Kazakov. * A Semantic Web Approach to Represent and Retrieve Information in a Corporate Memory, Ana B. Rios-Alvarado, R. Carolina Medina-Ramirez and Ricardo Marcelin-Jimenez. * Towards a Graphical Notation for OWL 2, Elisa Kendall, Roy Bell, Roger Burkhart, Mark Dutra and Evan Wallace.

Years

Languages

  • e 414
  • d 169
  • a 3
  • i 3
  • el 2
  • f 1
  • nl 1
  • More… Less…

Types

  • a 288
  • p 25
  • r 14
  • s 14
  • i 12
  • n 7
  • m 6
  • x 5
  • b 3
  • More… Less…

Themes