Search (43 results, page 3 of 3)

  • × type_ss:"x"
  • × year_i:[2010 TO 2020}
  1. Castellanos Ardila, J.P.: Investigation of an OSLC-domain targeting ISO 26262 : focus on the left side of the software V-model (2016) 0.00
    7.6892605E-4 = product of:
      0.0069203344 = sum of:
        0.0069203344 = product of:
          0.013840669 = sum of:
            0.013840669 = weight(_text_:web in 5819) [ClassicSimilarity], result of:
              0.013840669 = score(doc=5819,freq=2.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.14422815 = fieldWeight in 5819, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03125 = fieldNorm(doc=5819)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Abstract
    Industries have adopted a standardized set of practices for developing their products. In the automotive domain, the provision of safety-compliant systems is guided by ISO 26262, a standard that specifies a set of requirements and recommendations for developing automotive safety-critical systems. For being in compliance with ISO 26262, the safety lifecycle proposed by the standard must be included in the development process of a vehicle. Besides, a safety case that shows that the system is acceptably safe has to be provided. The provision of a safety case implies the execution of a precise documentation process. This process makes sure that the work products are available and traceable. Further, the documentation management is defined in the standard as a mandatory activity and guidelines are proposed/imposed for its elaboration. It would be appropriate to point out that a well-documented safety lifecycle will provide the necessary inputs for the generation of an ISO 26262-compliant safety case. The OSLC (Open Services for Lifecycle Collaboration) standard and the maturing stack of semantic web technologies represent a promising integration platform for enabling semantic interoperability between the tools involved in the safety lifecycle. Tools for requirements, architecture, development management, among others, are expected to interact and shared data with the help of domains specifications created in OSLC. This thesis proposes the creation of an OSLC tool-chain infrastructure for sharing safety-related information, where fragments of safety information can be generated. The steps carried out during the elaboration of this master thesis consist in the identification, representation, and shaping of the RDF resources needed for the creation of a safety case. The focus of the thesis is limited to a tiny portion of the ISO 26262 left-hand side of the V-model, more exactly part 6 clause 8 of the standard: Software unit design and implementation. Regardless of the use of a restricted portion of the standard during the execution of this thesis, the findings can be extended to other parts, and the conclusions can be generalize. This master thesis is considered one of the first steps towards the provision of an OSLC-based and ISO 26262-compliant methodological approach for representing and shaping the work products resulting from the execution of the safety lifecycle, documentation required in the conformation of an ISO-compliant safety case.
  2. Martins, S. de Castro: Modelo conceitual de ecossistema semântico de informações corporativas para aplicação em objetos multimídia (2019) 0.00
    7.6892605E-4 = product of:
      0.0069203344 = sum of:
        0.0069203344 = product of:
          0.013840669 = sum of:
            0.013840669 = weight(_text_:web in 117) [ClassicSimilarity], result of:
              0.013840669 = score(doc=117,freq=2.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.14422815 = fieldWeight in 117, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03125 = fieldNorm(doc=117)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Abstract
    Information management in corporate environments is a growing problem as companies' information assets grow and their need to use them in their operations. Several management models have been practiced with application on the most diverse fronts, practices that integrate the so-called Enterprise Content Management. This study proposes a conceptual model of semantic corporate information ecosystem, based on the Universal Document Model proposed by Dagobert Soergel. It focuses on unstructured information objects, especially multimedia, increasingly used in corporate environments, adding semantics and expanding their recovery potential in the composition and reuse of dynamic documents on demand. The proposed model considers stable elements in the organizational environment, such as actors, processes, business metadata and information objects, as well as some basic infrastructures of the corporate information environment. The main objective is to establish a conceptual model that adds semantic intelligence to information assets, leveraging pre-existing infrastructure in organizations, integrating and relating objects to other objects, actors and business processes. The approach methodology considered the state of the art of Information Organization, Representation and Retrieval, Organizational Content Management and Semantic Web technologies, in the scientific literature, as bases for the establishment of an integrative conceptual model. Therefore, the research will be qualitative and exploratory. The predicted steps of the model are: Environment, Data Type and Source Definition, Data Distillation, Metadata Enrichment, and Storage. As a result, in theoretical terms the extended model allows to process heterogeneous and unstructured data according to the established cut-outs and through the processes listed above, allowing value creation in the composition of dynamic information objects, with semantic aggregations to metadata.
  3. Ammann, A.: Klassifikation dynamischer Wissensräume : multifaktorielle Wechselbeziehungen zur Generierung und Gestaltung konstellativer dynamischer und mehrdimensionaler Wissensräume mit einem Fokus der Anwendung in der Zahn-, Mund- und Kieferheilkunde am Beispiel der enossalen Implantologie (2012) 0.00
    5.766945E-4 = product of:
      0.0051902505 = sum of:
        0.0051902505 = product of:
          0.010380501 = sum of:
            0.010380501 = weight(_text_:web in 1751) [ClassicSimilarity], result of:
              0.010380501 = score(doc=1751,freq=2.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.108171105 = fieldWeight in 1751, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=1751)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Abstract
    Das Thema der Wissensklassifikationen begleitet uns über alle vier epochalen Konvergenz-Zyklen im Wissenstransfer von der schriftlichen, der analogen über die digitalen bis zur künstlichen neuronalen Welt als Ordnungsprinzipien für eine Orientierung in unserer Wissenslandschaft. Die Explosion des Verfügungswissens wird geprägt durch eine immer weitere Fortschreitung zur Ausdifferenzierung der Wissenschaftsdisziplinen, die digitale Speicherung des "Weltwissens" mit ihren Web-Technologien und dem Ubiquitous Computing als Bestandteil des "Internets der Dinge". Die klassischen Konzepte der Wissensorganisation durch ihre Struktur der Dendrogramme und der orthogonalen Koordinatensysteme werden den Anforderungen für eine aufgaben- und problemorientierten Wissensnavigation nicht mehr gerecht, um die Qualität des Wissens aus der Quantität so zu selektieren, dass damit eine kompetente Unterstützung der Entscheidungsprozesse gewährleistet werden kann. Die Berechnung semantischer Relationen durch statistische, hierarchischagglomerative Algorithmen u.a. mit Cluster- und Vektorenmodellen stoßen an ihre Grenzen in der Modellierung von Wissensräumen.

Languages

  • d 25
  • e 14
  • f 1
  • hu 1
  • pt 1
  • More… Less…

Types