Search (4 results, page 1 of 1)

  • × author_ss:"Borlund, P."
  • × theme_ss:"Informetrie"
  1. Schneider, J.W.; Borlund, P.: Introduction to bibliometrics for construction and maintenance of thesauri : methodical considerations (2004) 0.00
    0.001757696 = product of:
      0.003515392 = sum of:
        0.003515392 = product of:
          0.007030784 = sum of:
            0.007030784 = weight(_text_:a in 4423) [ClassicSimilarity], result of:
              0.007030784 = score(doc=4423,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.13239266 = fieldWeight in 4423, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4423)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The paper introduces bibliometrics to the research area of knowledge organization - more precisely in relation to construction and maintenance of thesauri. As such, the paper reviews related work that has been of inspiration for the assembly of a semi-automatic, bibliometric-based, approach for construction and maintenance. Similarly, the paper discusses the methodical considerations behind the approach. Eventually, the semi-automatic approach is used to verify the applicability of bibliometric methods as a supplement to construction and maintenance of thesauri. In the context of knowledge organization, the paper outlines two fundamental approaches to knowledge organization, that is, the manual intellectual approach and the automatic algorithmic approach. Bibliometric methods belong to the automatic algorithmic approach, though bibliometrics do have special characteristics that are substantially different from other methods within this approach.
    Type
    a
  2. Jepsen, E.T.; Seiden, P.; Ingwersen, P.; Björneborn, L.; Borlund, P.: Characteristics of scientific Web publications : preliminary data gathering and analysis (2004) 0.00
    0.0016913437 = product of:
      0.0033826875 = sum of:
        0.0033826875 = product of:
          0.006765375 = sum of:
            0.006765375 = weight(_text_:a in 3091) [ClassicSimilarity], result of:
              0.006765375 = score(doc=3091,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.12739488 = fieldWeight in 3091, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3091)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Because of the increasing presence of scientific publications an the Web, combined with the existing difficulties in easily verifying and retrieving these publications, research an techniques and methods for retrieval of scientific Web publications is called for. In this article, we report an the initial steps taken toward the construction of a test collection of scientific Web publications within the subject domain of plant biology. The steps reported are those of data gathering and data analysis aiming at identifying characteristics of scientific Web publications. The data used in this article were generated based an specifically selected domain topics that are searched for in three publicly accessible search engines (Google, AlITheWeb, and AItaVista). A sample of the retrieved hits was analyzed with regard to how various publication attributes correlated with the scientific quality of the content and whether this information could be employed to harvest, filter, and rank Web publications. The attributes analyzed were inlinks, outlinks, bibliographic references, file format, language, search engine overlap, structural position (according to site structure), and the occurrence of various types of metadata. As could be expected, the ranked output differs between the three search engines. Apparently, this is caused by differences in ranking algorithms rather than the databases themselves. In fact, because scientific Web content in this subject domain receives few inlinks, both AItaVista and AlITheWeb retrieved a higher degree of accessible scientific content than Google. Because of the search engine cutoffs of accessible URLs, the feasibility of using search engine output for Web content analysis is also discussed.
    Type
    a
  3. Schneider, J.W.; Borlund, P.: Matrix comparison, part 2 : measuring the resemblance between proximity measures or ordination results by use of the mantel and procrustes statistics (2007) 0.00
    0.0016571716 = product of:
      0.0033143433 = sum of:
        0.0033143433 = product of:
          0.0066286866 = sum of:
            0.0066286866 = weight(_text_:a in 582) [ClassicSimilarity], result of:
              0.0066286866 = score(doc=582,freq=12.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.12482099 = fieldWeight in 582, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=582)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The present two-part article introduces matrix comparison as a formal means for evaluation purposes in informetric studies such as cocitation analysis. In the first part, the motivation behind introducing matrix comparison to informetric studies, as well as two important issues influencing such comparisons, matrix generation, and the composition of proximity measures, are introduced and discussed. In this second part, the authors introduce and thoroughly demonstrate two related matrix comparison techniques the Mantel test and Procrustes analysis, respectively. These techniques can compare and evaluate the degree of monotonicity between different proximity measures or their ordination results. In common with these techniques is the application of permutation procedures to test hypotheses about matrix resemblances. The choice of technique is related to the validation at hand. In the case of the Mantel test, the degree of resemblance between two measures forecast their potentially different affect upon ordination and clustering results. In principle, two proximity measures with a very strong resemblance most likely produce identical results, thus, choice of measure between the two becomes less important. Alternatively, or as a supplement, Procrustes analysis compares the actual ordination results without investigating the underlying proximity measures, by matching two configurations of the same objects in a multidimensional space. An advantage of the Procrustes analysis though, is the graphical solution provided by the superimposition plot and the resulting decomposition of variance components. Accordingly, the Procrustes analysis provides not only a measure of general fit between configurations, but also values for individual objects enabling more elaborate validations. As such, the Mantel test and Procrustes analysis can be used as statistical validation tools in informetric studies and thus help choosing suitable proximity measures.
    Type
    a
  4. Schneider, J.W.; Borlund, P.: Matrix comparison, part 1 : motivation and important issues for measuring the resemblance between proximity measures or ordination results (2007) 0.00
    0.0015127839 = product of:
      0.0030255679 = sum of:
        0.0030255679 = product of:
          0.0060511357 = sum of:
            0.0060511357 = weight(_text_:a in 584) [ClassicSimilarity], result of:
              0.0060511357 = score(doc=584,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.11394546 = fieldWeight in 584, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=584)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The present two-part article introduces matrix comparison as a formal means of evaluation in informetric studies such as cocitation analysis. In this first part, the motivation behind introducing matrix comparison to informetric studies, as well as two important issues influencing such comparisons, are introduced and discussed. The motivation is spurred by the recent debate on choice of proximity measures and their potential influence upon clustering and ordination results. The two important issues discussed here are matrix generation and the composition of proximity measures. The approach to matrix generation is demonstrated for the same data set, i.e., how data is represented and transformed in a matrix, evidently determines the behavior of proximity measures. Two different matrix generation approaches, in all probability, will lead to different proximity rankings of objects, which further lead to different ordination and clustering results for the same set of objects. Further, a resemblance in the composition of formulas indicates whether two proximity measures may produce similar ordination and clustering results. However, as shown in the case of the angular correlation and cosine measures, a small deviation in otherwise similar formulas can lead to different rankings depending on the contour of the data matrix transformed. Eventually, the behavior of proximity measures, that is whether they produce similar rankings of objects, is more or less data-specific. Consequently, the authors recommend the use of empirical matrix comparison techniques for individual studies to investigate the degree of resemblance between proximity measures or their ordination results. In part two of the article, the authors introduce and demonstrate two related statistical matrix comparison techniques the Mantel test and Procrustes analysis, respectively. These techniques can compare and evaluate the degree of monotonicity between different proximity measures or their ordination results. As such, the Mantel test and Procrustes analysis can be used as statistical validation tools in informetric studies and thus help choosing suitable proximity measures.
    Type
    a