Search (77 results, page 4 of 4)

  • × theme_ss:"Formale Begriffsanalyse"
  1. Bartel, H.-G.: Über Möglichkeiten der Formalen Begriffsanalyse in der Mathematischen Archäochemie (2000) 0.00
    0.0020296127 = product of:
      0.0040592253 = sum of:
        0.0040592253 = product of:
          0.008118451 = sum of:
            0.008118451 = weight(_text_:a in 4208) [ClassicSimilarity], result of:
              0.008118451 = score(doc=4208,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15287387 = fieldWeight in 4208, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.09375 = fieldNorm(doc=4208)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  2. Burmeister, P.; Holzer, R.: On the treatment of incomplete knowledge in formal concept analysis (2000) 0.00
    0.0020296127 = product of:
      0.0040592253 = sum of:
        0.0040592253 = product of:
          0.008118451 = sum of:
            0.008118451 = weight(_text_:a in 5085) [ClassicSimilarity], result of:
              0.008118451 = score(doc=5085,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15287387 = fieldWeight in 5085, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5085)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Some possible treatments of incomplete knowledge in conceptual data representation, data analysis and knowledge acquisition are presented. In particular, some ways of conceptual scalings as well as the role of the three-valued KLEENE-logic are briefly investigated. This logic is also one background in attribute exploration, a conceptual tool for knowledge acquisition. For this method a strategy is given to obtain as much of (attribute) implicational knowledge about a given "universe" as possible; and we show how to represent incomplete knowledge in order to be able to pin down the questions still to be answered in order to obtain complete knowledge in this situation
    Type
    a
  3. Priss, U.; Jacob, E.: Utilizing faceted structures for information systems design (1999) 0.00
    0.0020296127 = product of:
      0.0040592253 = sum of:
        0.0040592253 = product of:
          0.008118451 = sum of:
            0.008118451 = weight(_text_:a in 2470) [ClassicSimilarity], result of:
              0.008118451 = score(doc=2470,freq=18.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15287387 = fieldWeight in 2470, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2470)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Even for the experienced information professional, designing an efficient multi-purpose information access structure can be a very difficult task. This paper argues for the use of a faceted thesaurus as the basis for organizing a small-scale institutional website. We contend that a faceted approach to knowledge organization can make the process of organization less random and more manageable. We begin by reporting on an informal survey of three institutional websites. This study underscores the problems of organization that can impact access to information. We then formalize the terminology of faceted thesauri and demonstrate its application with several examples.
    The writers show that a faceted navigation structure makes web sites easier to use. They begin by analyzing the web sites of three library and information science faculties, and seeing if the sites easily provide the answers to five specific questions, e.g., how the school ranks in national evaluations. (It is worth noting that the web site of the Faculty of Information Studies and the University of Toronto, where this bibliography is being written, would fail on four of the five questions.) Using examples from LIS web site content, they show how facets can be related and constructed, and use concept diagrams for illustration. They briefly discuss constraints necessary when joining facets: for example, enrolled students can be full- or part-time, but prospective and alumni students cannot. It should not be possible to construct terms such as "part-time alumni" (see Yannis Tzitzikas et al, below in Background). They conclude that a faceted approach is best for web site navigation, because it can clearly show where the user is in the site, what the related pages are, and how to get to them. There is a short discussion of user interfaces, and the diagrams in the paper will be of interest to anyone making a facet-based web site. This paper is clearly written, informative, and thought-provoking. Uta Priss's web site lists her other publications, many of which are related and some of which are online: http://www.upriss.org.uk/top/research.html.
    Type
    a
  4. Neuss, C.; Kent, R.E.: Conceptual analysis of resource meta-information (1995) 0.00
    0.001913537 = product of:
      0.003827074 = sum of:
        0.003827074 = product of:
          0.007654148 = sum of:
            0.007654148 = weight(_text_:a in 2204) [ClassicSimilarity], result of:
              0.007654148 = score(doc=2204,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.14413087 = fieldWeight in 2204, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=2204)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    With the continuously growing amount of Internet accessible information resources, locating relevant information in the WWW becomes increasingly difficult. Recent developments provide scalable mechanisms for maintaing indexes of network accessible information. In order to implement sophisticated retrieval engines, a means of automatic analysis and classification of document meta information has to be found. Proposes the use of methods from the mathematical theory of concept analysis to analyze and interactively explore the information space defined by wide area resource discovery services
    Type
    a
  5. Conceptual structures : logical, linguistic, and computational issues. 8th International Conference on Conceptual Structures, ICCS 2000, Darmstadt, Germany, August 14-18, 2000 (2000) 0.00
    0.001829468 = product of:
      0.003658936 = sum of:
        0.003658936 = product of:
          0.007317872 = sum of:
            0.007317872 = weight(_text_:a in 691) [ClassicSimilarity], result of:
              0.007317872 = score(doc=691,freq=26.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.13779864 = fieldWeight in 691, product of:
                  5.0990195 = tf(freq=26.0), with freq of:
                    26.0 = termFreq=26.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=691)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Computer scientists create models of a perceived reality. Through AI techniques, these models aim at providing the basic support for emulating cognitive behavior such as reasoning and learning, which is one of the main goals of the Al research effort. Such computer models are formed through the interaction of various acquisition and inference mechanisms: perception, concept learning, conceptual clustering, hypothesis testing, probabilistic inference, etc., and are represented using different paradigms tightly linked to the processes that use them. Among these paradigms let us cite: biological models (neural nets, genetic programming), logic-based models (first-order logic, modal logic, rule-based systems), virtual reality models (object systems, agent systems), probabilistic models (Bayesian nets, fuzzy logic), linguistic models (conceptual dependency graphs, language-based rep resentations), etc. One of the strengths of the Conceptual Graph (CG) theory is its versatility in terms of the representation paradigms under which it falls. It can be viewed and therefore used, under different representation paradigms, which makes it a popular choice for a wealth of applications. Its full coupling with different cognitive processes lead to the opening of the field toward related research communities such as the Description Logic, Formal Concept Analysis, and Computational Linguistic communities. We now see more and more research results from one community enrich the other, laying the foundations of common philosophical grounds from which a successful synergy can emerge. ICCS 2000 embodies this spirit of research collaboration. It presents a set of papers that we believe, by their exposure, will benefit the whole community. For instance, the technical program proposes tracks on Conceptual Ontologies, Language, Formal Concept Analysis, Computational Aspects of Conceptual Structures, and Formal Semantics, with some papers on pragmatism and human related aspects of computing. Never before was the program of ICCS formed by so heterogeneously rooted theories of knowledge representation and use. We hope that this swirl of ideas will benefit you as much as it already has benefited us while putting together this program
    Content
    Concepts and Language: The Role of Conceptual Structure in Human Evolution (Keith Devlin) - Concepts in Linguistics - Concepts in Natural Language (Gisela Harras) - Patterns, Schemata, and Types: Author Support through Formalized Experience (Felix H. Gatzemeier) - Conventions and Notations for Knowledge Representation and Retrieval (Philippe Martin) - Conceptual Ontology: Ontology, Metadata, and Semiotics (John F. Sowa) - Pragmatically Yours (Mary Keeler) - Conceptual Modeling for Distributed Ontology Environments (Deborah L. McGuinness) - Discovery of Class Relations in Exception Structured Knowledge Bases (Hendra Suryanto, Paul Compton) - Conceptual Graphs: Perspectives: CGs Applications: Where Are We 7 Years after the First ICCS ? (Michel Chein, David Genest) - The Engineering of a CC-Based System: Fundamental Issues (Guy W. Mineau) - Conceptual Graphs, Metamodeling, and Notation of Concepts (Olivier Gerbé, Guy W. Mineau, Rudolf K. Keller) - Knowledge Representation and Reasonings: Based on Graph Homomorphism (Marie-Laure Mugnier) - User Modeling Using Conceptual Graphs for Intelligent Agents (James F. Baldwin, Trevor P. Martin, Aimilia Tzanavari) - Towards a Unified Querying System of Both Structured and Semi-structured Imprecise Data Using Fuzzy View (Patrice Buche, Ollivier Haemmerlé) - Formal Semantics of Conceptual Structures: The Extensional Semantics of the Conceptual Graph Formalism (Guy W. Mineau) - Semantics of Attribute Relations in Conceptual Graphs (Pavel Kocura) - Nested Concept Graphs and Triadic Power Context Families (Susanne Prediger) - Negations in Simple Concept Graphs (Frithjof Dau) - Extending the CG Model by Simulations (Jean-François Baget) - Contextual Logic and Formal Concept Analysis: Building and Structuring Description Logic Knowledge Bases: Using Least Common Subsumers and Concept Analysis (Franz Baader, Ralf Molitor) - On the Contextual Logic of Ordinal Data (Silke Pollandt, Rudolf Wille) - Boolean Concept Logic (Rudolf Wille) - Lattices of Triadic Concept Graphs (Bernd Groh, Rudolf Wille) - Formalizing Hypotheses with Concepts (Bernhard Ganter, Sergei 0. Kuznetsov) - Generalized Formal Concept Analysis (Laurent Chaudron, Nicolas Maille) - A Logical Generalization of Formal Concept Analysis (Sébastien Ferré, Olivier Ridoux) - On the Treatment of Incomplete Knowledge in Formal Concept Analysis (Peter Burmeister, Richard Holzer) - Conceptual Structures in Practice: Logic-Based Networks: Concept Graphs and Conceptual Structures (Peter W. Eklund) - Conceptual Knowledge Discovery and Data Analysis (Joachim Hereth, Gerd Stumme, Rudolf Wille, Uta Wille) - CEM - A Conceptual Email Manager (Richard Cole, Gerd Stumme) - A Contextual-Logic Extension of TOSCANA (Peter Eklund, Bernd Groh, Gerd Stumme, Rudolf Wille) - A Conceptual Graph Model for W3C Resource Description Framework (Olivier Corby, Rose Dieng, Cédric Hébert) - Computational Aspects of Conceptual Structures: Computing with Conceptual Structures (Bernhard Ganter) - Symmetry and the Computation of Conceptual Structures (Robert Levinson) An Introduction to SNePS 3 (Stuart C. Shapiro) - Composition Norm Dynamics Calculation with Conceptual Graphs (Aldo de Moor) - From PROLOG++ to PROLOG+CG: A CG Object-Oriented Logic Programming Language (Adil Kabbaj, Martin Janta-Polczynski) - A Cost-Bounded Algorithm to Control Events Generalization (Gaël de Chalendar, Brigitte Grau, Olivier Ferret)
  6. Eklund, P.; Groh, B.; Stumme, G.; Wille, R.: ¬A conceptual-logic extension of TOSCANA (2000) 0.00
    0.001757696 = product of:
      0.003515392 = sum of:
        0.003515392 = product of:
          0.007030784 = sum of:
            0.007030784 = weight(_text_:a in 5082) [ClassicSimilarity], result of:
              0.007030784 = score(doc=5082,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.13239266 = fieldWeight in 5082, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5082)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The aim of this paper is to indicate how TOSCANA may be extended to allow graphical representations not only of concept lattices but also of concept graphs in the sense of Contextual Logic. The contextual- logic extension of TOSCANA requires the logical scaling of conceptual and relational scales for which we propose the Peircean Algebraic Logic as reconstructed by R. W. Burch. As graphical representations we recommend, besides labelled line diagrams of concept lattices and Sowa's diagrams of conceptual graphs, particular information maps for utilizing background knowledge as much as possible. Our considerations are illustrated by a small information system about the domestic flights in Austria
    Type
    a
  7. Eklund. P.W.: Logic-based networks : concept graphs and conceptual structures (2000) 0.00
    0.001757696 = product of:
      0.003515392 = sum of:
        0.003515392 = product of:
          0.007030784 = sum of:
            0.007030784 = weight(_text_:a in 5084) [ClassicSimilarity], result of:
              0.007030784 = score(doc=5084,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.13239266 = fieldWeight in 5084, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5084)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Logic-based networks are semantic networks that support reasoning capabilities. In this paper, knowledge processing within logicbased networks is viewed as three stages. The first stage involves the formation of concepts and relations: the basic primitives with which we wish to formulate knowledge. The second stage involves the formation of wellformed formulas that express knowledge about the primitive concepts and relations once isolated. The final stage involves efficiently processing the wffs to the desired end. Our research involves each of these steps as they relate to Sowa's conceptual structures and Wille's concept lattices. Formal Concept Analysis gives us a capability to perform concept formation via symbolic machine learning. Concept(ual) Graphs provide a means to describe relational properties between primitive concept and relation types. Finally, techniques from other areas of computer science are required to compute logic-based networks efficiently. This paper illustrates the three stages of knowledge processing in practical terms using examples from our research
    Type
    a
  8. Kollewe, W.; Sander, C.; Schmiede, R.; Wille, R.: TOSCANA als Instrument der bibliothekarischen Sacherschließung (1995) 0.00
    0.0016913437 = product of:
      0.0033826875 = sum of:
        0.0033826875 = product of:
          0.006765375 = sum of:
            0.006765375 = weight(_text_:a in 927) [ClassicSimilarity], result of:
              0.006765375 = score(doc=927,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.12739488 = fieldWeight in 927, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.078125 = fieldNorm(doc=927)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  9. Groh, B.; Strahringer, S.; Wille, R.: TOSCANA-systems based on thesauri (1998) 0.00
    0.0016913437 = product of:
      0.0033826875 = sum of:
        0.0033826875 = product of:
          0.006765375 = sum of:
            0.006765375 = weight(_text_:a in 3084) [ClassicSimilarity], result of:
              0.006765375 = score(doc=3084,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.12739488 = fieldWeight in 3084, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.078125 = fieldNorm(doc=3084)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  10. Kumar, C.A.; Radvansky, M.; Annapurna, J.: Analysis of Vector Space Model, Latent Semantic Indexing and Formal Concept Analysis for information retrieval (2012) 0.00
    0.001674345 = product of:
      0.00334869 = sum of:
        0.00334869 = product of:
          0.00669738 = sum of:
            0.00669738 = weight(_text_:a in 2710) [ClassicSimilarity], result of:
              0.00669738 = score(doc=2710,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.12611452 = fieldWeight in 2710, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2710)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Latent Semantic Indexing (LSI), a variant of classical Vector Space Model (VSM), is an Information Retrieval (IR) model that attempts to capture the latent semantic relationship between the data items. Mathematical lattices, under the framework of Formal Concept Analysis (FCA), represent conceptual hierarchies in data and retrieve the information. However both LSI and FCA uses the data represented in form of matrices. The objective of this paper is to systematically analyze VSM, LSI and FCA for the task of IR using the standard and real life datasets.
    Type
    a
  11. Ganter, B.; Wille, R.: Formal concept analysis : mathematical foundations (1998) 0.00
    0.0014351527 = product of:
      0.0028703054 = sum of:
        0.0028703054 = product of:
          0.005740611 = sum of:
            0.005740611 = weight(_text_:a in 5061) [ClassicSimilarity], result of:
              0.005740611 = score(doc=5061,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.10809815 = fieldWeight in 5061, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5061)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This is the first textbook on formal concept analysis. It gives a systematic presentation of the mathematical foundations and their relation to applications in computer science, especially data analysis and knowledge processing. Above all, it presents graphical methods for representing conceptual systems that have proved themselves in communicating knowledge. Theory and graphical representation are thus closely coupled together. The mathematical foundations are treated thouroughly and illuminated by means of numerous examples. Since computers are being used ever more widely for knowledge processing, formal methods for conceptual analysis are gaining in importance. This book makes the basic theory for such methods accessible in a compact form
  12. Kipke, U.; Wille, R.: Begriffsverbände als Ablaufschemata zur Gegenstandsbestimmung (1986) 0.00
    0.001353075 = product of:
      0.00270615 = sum of:
        0.00270615 = product of:
          0.0054123 = sum of:
            0.0054123 = weight(_text_:a in 3039) [ClassicSimilarity], result of:
              0.0054123 = score(doc=3039,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.10191591 = fieldWeight in 3039, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3039)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  13. Kollewe, W.: Instrumente der Literaturverwaltung : Inhaltliche analyse von Datenbeständen durch 'Begriffliche Wissensverarbeitung' (1996) 0.00
    0.001353075 = product of:
      0.00270615 = sum of:
        0.00270615 = product of:
          0.0054123 = sum of:
            0.0054123 = weight(_text_:a in 4376) [ClassicSimilarity], result of:
              0.0054123 = score(doc=4376,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.10191591 = fieldWeight in 4376, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4376)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  14. Ganter, B.; Wille, R.: Formale Begriffsanalyse : Mathematische Grundlagen (1996) 0.00
    0.001353075 = product of:
      0.00270615 = sum of:
        0.00270615 = product of:
          0.0054123 = sum of:
            0.0054123 = weight(_text_:a in 4605) [ClassicSimilarity], result of:
              0.0054123 = score(doc=4605,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.10191591 = fieldWeight in 4605, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4605)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This first textbook in the field of formal concept analysis provides a systematic presentation of the mathematical foundations and their relation to applications in informatics, especially data analysis and knowledge processing
  15. Priss, U.; Old, L.J.: Concept neighbourhoods in knowledge organisation systems (2010) 0.00
    0.001353075 = product of:
      0.00270615 = sum of:
        0.00270615 = product of:
          0.0054123 = sum of:
            0.0054123 = weight(_text_:a in 3527) [ClassicSimilarity], result of:
              0.0054123 = score(doc=3527,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.10191591 = fieldWeight in 3527, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3527)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  16. Wille, R.: Begriffliche Wissensverarbeitung in der Wirtschaft (2002) 0.00
    0.0011839407 = product of:
      0.0023678814 = sum of:
        0.0023678814 = product of:
          0.0047357627 = sum of:
            0.0047357627 = weight(_text_:a in 547) [ClassicSimilarity], result of:
              0.0047357627 = score(doc=547,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.089176424 = fieldWeight in 547, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=547)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  17. Begriffliche Wissensverarbeitung : Methoden und Anwendungen. Mit Beiträgen zahlreicher Fachwissenschaftler (2000) 0.00
    8.4567186E-4 = product of:
      0.0016913437 = sum of:
        0.0016913437 = product of:
          0.0033826875 = sum of:
            0.0033826875 = weight(_text_:a in 4193) [ClassicSimilarity], result of:
              0.0033826875 = score(doc=4193,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.06369744 = fieldWeight in 4193, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4193)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Content
    Enthält die Beiträge: GANTER, B.: Begriffe und Implikationen; BURMEISTER, P.: ConImp: Ein Programm zur Fromalen Begriffsanalyse; Lengnink, K.: Ähnlichkeit als Distanz in Begriffsverbänden; POLLANDT, S.: Datenanalyse mit Fuzzy-Begriffen; PREDIGER, S.: Terminologische Merkmalslogik in der Formalen Begriffsanalyse; WILLE, R. u. M. ZICKWOLFF: Grundlagen einer Triadischen Begriffsanalyse; LINDIG, C. u. G. SNELTING: Formale Begriffsanalyse im Software Engineering; STRACK, H. u. M. SKORSKY: Zugriffskontrolle bei Programmsystemen und im Datenschutz mittels Formaler Begriffsanalyse; ANDELFINGER, U.: Inhaltliche Erschließung des Bereichs 'Sozialorientierte Gestaltung von Informationstechnik': Ein begriffsanalytischer Ansatz; GÖDERT, W.: Wissensdarstellung in Informationssystemen, Fragetypen und Anforderungen an Retrievalkomponenten; ROCK, T. u. R. WILLE: Ein TOSCANA-Erkundungssystem zur Literatursuche; ESCHENFELDER, D. u.a.: Ein Erkundungssystem zum Baurecht: Methoden der Entwicklung eines TOSCANA-Systems; GROßKOPF, A. u. G. HARRAS: Begriffliche Erkundung semantischer Strukturen von Sprechaktverben; ZELGER, J.: Grundwerte, Ziele und Maßnahmen in einem regionalen Krankenhaus: Eine Anwendung des Verfahrens GABEK; KOHLER-KOCH, B. u. F. VOGT: Normen- und regelgeleitete internationale Kooperationen: Formale Begriffsanalyse in der Politikwissenschaft; HENNING, H.J. u. W. KEMMNITZ: Entwicklung eines kontextuellen Methodenkonzeptes mit Hilfer der Formalen Begriffsanalyse an Beispielen zum Risikoverständnis; BARTEL, H.-G.: Über Möglichkeiten der Formalen Begriffsanalyse in der Mathematischen Archäochemie

Years

Languages

  • e 43
  • d 34

Types

  • a 70
  • m 5
  • s 3
  • el 1
  • r 1
  • More… Less…