Search (10 results, page 1 of 1)

  • × type_ss:"el"
  • × theme_ss:"Verteilte bibliographische Datenbanken"
  1. Coyle, K.: ¬The virtual union catalog : a comparative study (2000) 0.00
    0.0030444188 = product of:
      0.0060888375 = sum of:
        0.0060888375 = product of:
          0.012177675 = sum of:
            0.012177675 = weight(_text_:a in 1230) [ClassicSimilarity], result of:
              0.012177675 = score(doc=1230,freq=18.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.22931081 = fieldWeight in 1230, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1230)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    A Virtual union catalog is a possible alternative to the centralized database of distributed resources found in many library systems. Such a catalog would not be maintained in a single location but would be created in real time by searching each local campus or affiliate library's catalog through the Z39.50 protocol. This would eliminate the redundancy of record storage as well as the expense of loading and maintaining access to the central catalog. This article describes a test implementation of a virtual union catalog for the University of California system. It describes some of the differences between the virtual catalog and the existing, centralized union catalog (MELVYL). The research described in the paper suggests enhancements that must be made if the virtual union catalog is to become a reasonable service alternative to the MELVYL® catalog.
    Type
    a
  2. Veen, T. van; Oldroyd, B.: Search and retrieval in The European Library : a new approach (2004) 0.00
    0.0029294936 = product of:
      0.005858987 = sum of:
        0.005858987 = product of:
          0.011717974 = sum of:
            0.011717974 = weight(_text_:a in 1164) [ClassicSimilarity], result of:
              0.011717974 = score(doc=1164,freq=24.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.22065444 = fieldWeight in 1164, product of:
                  4.8989797 = tf(freq=24.0), with freq of:
                    24.0 = termFreq=24.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1164)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The objective of the European Library (TEL) project [TEL] was to set up a co-operative framework and specify a system for integrated access to the major collections of the European national libraries. This has been achieved by successfully applying a new approach for search and retrieval via URLs (SRU) [ZiNG] combined with a new metadata paradigm. One aim of the TEL approach is to have a low barrier of entry into TEL, and this has driven our choice for the technical solution described here. The solution comprises portal and client functionality running completely in the browser, resulting in a low implementation barrier and maximum scalability, as well as giving users control over the search interface and what collections to search. In this article we will describe, step by step, the development of both the search and retrieval architecture and the metadata infrastructure in the European Library project. We will show that SRU is a good alternative to the Z39.50 protocol and can be implemented without losing investments in current Z39.50 implementations. The metadata model being used by TEL is a Dublin Core Application Profile, and we have taken into account that functional requirements will change over time and therefore the metadata model will need to be able to evolve in a controlled way. We make this possible by means of a central metadata registry containing all characteristics of the metadata in TEL. Finally, we provide two scenarios to show how the TEL concept can be developed and extended, with applications capable of increasing their functionality by "learning" new metadata or protocol options.
    Type
    a
  3. Fang, L.: ¬A developing search service : heterogeneous resources integration and retrieval system (2004) 0.00
    0.0023919214 = product of:
      0.0047838427 = sum of:
        0.0047838427 = product of:
          0.009567685 = sum of:
            0.009567685 = weight(_text_:a in 1193) [ClassicSimilarity], result of:
              0.009567685 = score(doc=1193,freq=16.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.18016359 = fieldWeight in 1193, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1193)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This article describes two approaches for searching heterogeneous resources, which are explained as they are used in two corresponding existing systems-RIRS (Resource Integration Retrieval System) and HRUSP (Heterogeneous Resource Union Search Platform). On analyzing the existing systems, a possible framework-the MUSP (Multimetadata-Based Union Search Platform) is presented. Libraries now face a dilemma. On one hand, libraries subscribe to many types of database retrieval systems that are produced by various providers. The libraries build their data and information systems independently. This results in highly heterogeneous and distributed systems at the technical level (e.g., different operating systems and user interfaces) and at the conceptual level (e.g., the same objects are named using different terms). On the other hand, end users want to access all these heterogeneous data via a union interface, without having to know the structure of each information system or the different retrieval methods used by the systems. Libraries must achieve a harmony between information providers and users. In order to bridge the gap between the service providers and the users, it would seem that all source databases would need to be rebuilt according to a uniform data structure and query language, but this seems impossible. Fortunately, however, libraries and information and technology providers are now making an effort to find a middle course that meets the requirements of both data providers and users. They are doing this through resource integration.
    Type
    a
  4. Zia, L.L.: Growing a national learning environments and resources network for science, mathematics, engineering, and technology education : current issues and opportunities for the NSDL program (2001) 0.00
    0.0022438213 = product of:
      0.0044876426 = sum of:
        0.0044876426 = product of:
          0.008975285 = sum of:
            0.008975285 = weight(_text_:a in 1217) [ClassicSimilarity], result of:
              0.008975285 = score(doc=1217,freq=22.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.16900843 = fieldWeight in 1217, product of:
                  4.690416 = tf(freq=22.0), with freq of:
                    22.0 = termFreq=22.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1217)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The National Science Foundation's (NSF) National Science, Mathematics, Engineering, and Technology Education Digital Library (NSDL) program seeks to create, develop, and sustain a national digital library supporting science, mathematics, engineering, and technology (SMET) education at all levels -- preK-12, undergraduate, graduate, and life-long learning. The resulting virtual institution is expected to catalyze and support continual improvements in the quality of science, mathematics, engineering, and technology (SMET) education in both formal and informal settings. The vision for this program has been explored through a series of workshops over the past several years and documented in accompanying reports and monographs. (See [1-7, 10, 12, and 13].) These efforts have led to a characterization of the digital library as a learning environments and resources network for science, mathematics, engineering, and technology education, that is: * designed to meet the needs of learners, in both individual and collaborative settings; * constructed to enable dynamic use of a broad array of materials for learning primarily in digital format; and * managed actively to promote reliable anytime, anywhere access to quality collections and services, available both within and without the network. Underlying the NSDL program are several working assumptions. First, while there is currently no lack of "great piles of content" on the Web, there is an urgent need for "piles of great content". The difficulties in discovering and verifying the authority of appropriate Web-based material are certainly well known, yet there are many examples of learning resources of great promise available (particularly those exploiting the power of multiple media), with more added every day. The breadth and interconnectedness of the Web are simultaneously a great strength and shortcoming. Second, the "unit" or granularity of educational content can and will shrink, affording the opportunity for users to become creators and vice versa, as learning objects are reused, repackaged, and repurposed. To be sure, this scenario cannot take place without serious attention to intellectual property and digital rights management concerns. But new models and technologies are being explored (see a number of recent articles in the January issue of D-Lib Magazine). Third, there is a need for an "organizational infrastructure" that facilitates connections between distributed users and distributed content, as alluded to in the third bullet above. Finally, while much of the ongoing use of the library is envisioned to be "free" in the sense of the public good, there is an opportunity and a need to consider multiple alternative models of sustainability, particularly in the area of services offered by the digital library. More details about the NSDL program including information about proposal deadlines and current awards may be found at <http://www.ehr.nsf.gov/ehr/due/programs/nsdl>.
    Type
    a
  5. Teets, M.; Murray, P.: Metasearch authentication and access management (2006) 0.00
    0.0020714647 = product of:
      0.0041429293 = sum of:
        0.0041429293 = product of:
          0.008285859 = sum of:
            0.008285859 = weight(_text_:a in 1154) [ClassicSimilarity], result of:
              0.008285859 = score(doc=1154,freq=12.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15602624 = fieldWeight in 1154, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1154)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Metasearch - also called parallel search, federated search, broadcast search, and cross-database search - has become commonplace in the information community's vocabulary. All speak to a common theme of searching and retrieving from multiple databases, sources, platforms, protocols, and vendors at the point of the user's request. Metasearch services rely on a variety of approaches including open standards (such as NISO's Z39.50 and SRU/SRW), proprietary programming interfaces, and "screen scraping." However, the absence of widely supported standards, best practices, and tools makes the metasearch environment less efficient for the metasearch provider, the content provider, and ultimately the end-user. To spur the development of widely supported standards and best practices, the National Information Standards Organization (NISO) sponsored a Metasearch Initiative in 2003 to enable: * metasearch service providers to offer more effective and responsive services, * content providers to deliver enhanced content and protect their intellectual property, and * libraries to deliver a simple search (a.k.a. "Google") that covers the breadth of their vetted commercial and free resources. The Access Management Task Group was one of three groups chartered by NISO as part of the Metasearch Initiative. The focus of the group was on gathering requirements for Metasearch authentication and access needs, inventorying existing processes, developing a series of formal use cases describing the access needs, recommending best practices given today's processes, and recommending and pursing changes to current solutions to better support metasearch applications. In September 2005, the group issued their final report and recommendation. This article summarizes the group's work and final recommendation.
    Type
    a
  6. Zia, L.L.: new projects and a progress report : ¬The NSF National Science, Technology, Engineering, and Mathematics Education Digital Library (NSDL) program (2001) 0.00
    0.0019633435 = product of:
      0.003926687 = sum of:
        0.003926687 = product of:
          0.007853374 = sum of:
            0.007853374 = weight(_text_:a in 1227) [ClassicSimilarity], result of:
              0.007853374 = score(doc=1227,freq=22.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.14788237 = fieldWeight in 1227, product of:
                  4.690416 = tf(freq=22.0), with freq of:
                    22.0 = termFreq=22.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=1227)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The National Science Foundation's (NSF) National Science, Technology, Engineering, and Mathematics Education Digital Library (NSDL) program comprises a set of projects engaged in a collective effort to build a national digital library of high quality science, technology, engineering, and mathematics (STEM) educational materials for students and teachers at all levels, in both formal and informal settings. By providing broad access to a rich, reliable, and authoritative collection of interactive learning and teaching resources and associated services in a digital environment, the NSDL will encourage and sustain continual improvements in the quality of STEM education for all students, and serve as a resource for lifelong learning. Though the program is relatively new, its vision and operational framework have been developed over a number of years through various workshops and planning meetings. The NSDL program held its first formal funding cycle during fiscal year 2000 (FY00), accepting proposals in four tracks: Core Integration System, Collections, Services, and Targeted Research. Twenty-nine awards were made across these tracks in September 2000. Brief descriptions of each FY00 project appeared in an October 2000 D-Lib Magazine article; full abstracts are available from the Awards Section at <http://www.ehr.nsf.gov/ehr/due/programs/nsdl/>. In FY01 the program received one hundred-nine proposals across its four tracks with the number of proposals in the collections, services, and targeted research tracks increasing to one hundred-one from the eighty received in FY00. In September 2001 grants were awarded to support 35 new projects: 1 project in the core integration track, 18 projects in the collections track, 13 in the services track, and 3 in targeted research. Two NSF directorates, the Directorate for Geosciences (GEO) and the Directorate for Mathematical and Physical Sciences (MPS) are both providing significant co-funding on several projects, illustrating the NSDL program's facilitation of the integration of research and education, an important strategic objective of the NSF. Thus far across both fiscal years of the program fifteen projects have enjoyed this joint support. Following is a list of the FY01 awards indicating the official NSF award number (each beginning with DUE), the project title, the grantee institution, and the name of the Principal Investigator (PI). A condensed description of the project is also included. Full abstracts are available from the Awards Section at the NSDL program site at <http://www.ehr.nsf.gov/ehr/due/programs/nsdl/>. (Grants with shared titles are formal collaborations and are grouped together.) The projects are displayed by track and are listed by award number. In addition, six of these projects have explicit relevance and application to K-12 education. Six others clearly have potential for application to the K-12 arena. The NSDL program will have another funding cycle in fiscal year 2002 with the next program solicitation expected to be available in January 2002, and an anticipated deadline for proposals in mid-April 2002.
    Type
    a
  7. Roszkowski, M.; Lukas, C.: ¬A distributed architecture for resource discovery using metadata (1998) 0.00
    0.001913537 = product of:
      0.003827074 = sum of:
        0.003827074 = product of:
          0.007654148 = sum of:
            0.007654148 = weight(_text_:a in 1256) [ClassicSimilarity], result of:
              0.007654148 = score(doc=1256,freq=16.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.14413087 = fieldWeight in 1256, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1256)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This article describes an approach for linking geographically distributed collections of metadata so that they are searchable as a single collection. We describe the infrastructure, which uses standard Internet protocols such as the Lightweight Directory Access Protocol (LDAP) and the Common Indexing Protocol (CIP), to distribute queries, return results, and exchange index information. We discuss the advantages of using linked collections of authoritative metadata as an alternative to using a keyword indexing search-engine for resource discovery. We examine other architectures that use metadata for resource discovery, such as Dienst/NCSTRL, the AHDS HTTP/Z39.50 Gateway, and the ROADS initiative. Finally, we discuss research issues and future directions of the project. The Internet Scout Project, which is funded by the National Science Foundation and is located in the Computer Sciences Department at the University of Wisconsin-Madison, is charged with assisting the higher education community in resource discovery on the Internet. To that end, the Scout Report and subsequent subject-specific Scout Reports were developed to guide the U.S. higher education community to research-quality resources. The Scout Report Signpost utilizes the content from the Scout Reports as the basis of a metadata collection. Signpost consists of more than 2000 cataloged Internet sites using established standards such as Library of Congress subject headings and abbreviated call letters, and emerging standards such as the Dublin Core (DC). This searchable and browseable collection is free and freely accessible, as are all of the Internet Scout Project's services.
    As well developed as both the Scout Reports and Signpost are, they cannot capture the wealth of high-quality content that is available on the Internet. An obvious next step toward increasing the usefulness of our own collection and its value to our customer base is to partner with other high-quality content providers who have developed similar collections and to develop a single, virtual collection. Project Isaac (working title) is the Internet Scout Project's latest resource discovery effort. Project Isaac involves the development of a research testbed that allows experimentation with protocols and algorithms for creating, maintaining, indexing and searching distributed collections of metadata. Project Isaac's infrastructure uses standard Internet protocols, such as the Lightweight Directory Access Protocol (LDAP) and the Common Indexing Protocol (CIP) to distribute queries, return results, and exchange index or centroid information. The overall goal is to support a single-search interface to geographically distributed and independently maintained metadata collections.
    Type
    a
  8. Severiens, T.; Hohlfeld, M.; Zimmermann, K.; Hilf, E.R.: PhysDoc - a distributed network of physics institutions documents : collecting, indexing, and searching high quality documents by using harvest (2000) 0.00
    0.0018909799 = product of:
      0.0037819599 = sum of:
        0.0037819599 = product of:
          0.0075639198 = sum of:
            0.0075639198 = weight(_text_:a in 6470) [ClassicSimilarity], result of:
              0.0075639198 = score(doc=6470,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.14243183 = fieldWeight in 6470, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=6470)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    PhysNet offers online services that enable a physicist to keep in touch with the worldwide physics community and to receive all information he or she may need. In addition to being of great value to physicists, these services are practical examples of the use of modern methods of digital libraries, in particular the use of metadata harvesting. One service is PhysDoc. This consists of a Harvest-based online information broker- and gatherer-network, which harvests information from the local web-servers of professional physics institutions worldwide (mostly in Europe and USA so far). PhysDoc focuses on scientific information posted by the individual scientist at his local server, such as documents, publications, reports, publication lists, and lists of links to documents. All rights are reserved for the authors who are responsible for the content and quality of their documents. PhysDis is an analogous service but specifically for university theses, with their dual requirements of examination work and publication. The strategy is to select high quality sites containing metadata. We report here on the present status of PhysNet, our experience in operating it, and the development of its usage. To continuously involve authors, research groups, and national societies is considered crucial for a future stable service.
    Type
    a
  9. Zia, L.L.: ¬The NSF National Science, Technology, Engineering, and Mathematics Education Digital Library (NSDL) Program : new projects from fiscal year 2004 (2005) 0.00
    0.001757696 = product of:
      0.003515392 = sum of:
        0.003515392 = product of:
          0.007030784 = sum of:
            0.007030784 = weight(_text_:a in 1221) [ClassicSimilarity], result of:
              0.007030784 = score(doc=1221,freq=24.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.13239266 = fieldWeight in 1221, product of:
                  4.8989797 = tf(freq=24.0), with freq of:
                    24.0 = termFreq=24.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=1221)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In fall 2004, the National Science Foundation's (NSF) National Science, Technology, Engineering, and Mathematics Education Digital Library (NSDL) program made new grants in three tracks: Pathways, Services, and Targeted Research. Together with projects started in fiscal years (FY) 2000-03 these new grants continue the development of a national digital library of high quality educational resources to support learning at all levels in science, technology, engineering, and mathematics (STEM). By enabling broad access to reliable and authoritative learning and teaching materials and associated services in a digital environment, the National Science Digital Library expects to promote continual improvements in the quality of formal STEM education, and also to serve as a resource for informal and lifelong learning. Proposals for the FY05 funding cycle are due April 11, 2005, and the full solicitation is available at <http://www.nsf.gov/publications/pub_summ.jsp?ods_key=nsf05545>. Two NSF directorates, the Directorate for Geosciences (GEO) and the Directorate for Mathematical and Physical Sciences (MPS) have both provided significant co-funding for over twenty projects in the first four years of the program, illustrating the NSDL program's facilitation of the integration of research and education, an important strategic objective of the NSF. In FY2004, the NSDL program introduced a new Pathways track, replacing the earlier Collections track. The Services track strongly encouraged two particular types of projects: (1) selection services and (2) usage development workshops. * Pathways projects provide stewardship for educational content and services needed by a broad community of learners; * Selection services projects identify and increase the high-quality STEM educational content known to NSDL; and * Usage development workshops engage new communities of learners in the use of NSDL and its resources.
    These three elements reflect a refinement of NSDL's initial emphasis on collecting educational resources, materials, and other digital learning objects, towards enabling learners to "connect" or otherwise find pathways to resources appropriate to their needs. Projects are also developing both the capacities of individual users and the capacity of larger communities of learners to use and contribute to NSDL. For the FY2004 funding cycle, one hundred forty-four proposals sought approximately $126.5 million in total funding. Twenty-four new awards were made with a cumulative budget of approximately $10.2 million. These include four in the Pathways track, twelve in the Services track, and eight in the Targeted Research track. As in the earlier years of the program, sister directorates to the NSF Directorate for Education and Human Resources (EHR) are providing significant co-funding of projects. Participating directorates for FY2004 are GEO and MPS. Within EHR, the Advanced Technological Education program and the Experimental Program to Stimulate Competitive Research are also co-funding projects. Complete information on the technical and organizational progress of NSDL including links to current Standing Committees and community workspaces may be found at <http://nsdl.org/community/nsdlgroups.php>. All workspaces are open to the public, and interested organizations and individuals are encouraged to learn more about NSDL and join in its development. Following is a list of the new FY04 awards displaying the official NSF award number, the project title, the grantee institution, and the name of the Principal Investigator (PI). A condensed description of the project is also included. Full abstracts are available from the NSDL program site (under Related URLs see the link to NSDL program site (under Related URLs see the link to Abstracts of Recent Awards Made Through This Program.) The projects are displayed by track and are listed by award number. In addition, seven of these projects have explicit relevance to applications to pre-K to 12 education (indicated with a * below). Four others have clear potential for application to the pre-K to 12 arena (indicated with a ** below).
    Type
    a
  10. Hakala, J.: Z39.50-1995: information retrieval protocol : an introduction to the standard and it's usage (1996) 0.00
    0.001353075 = product of:
      0.00270615 = sum of:
        0.00270615 = product of:
          0.0054123 = sum of:
            0.0054123 = weight(_text_:a in 3340) [ClassicSimilarity], result of:
              0.0054123 = score(doc=3340,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.10191591 = fieldWeight in 3340, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3340)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This article describes the Internet information retrieval protocol, Z39.50, and it's usage. The services of Z39.50 are depicted, as are some important terms related to the standard. A description of the OPAC Network in Europe (ONE), an important Z39.50 implementation project is included