Search (18 results, page 1 of 1)

  • × theme_ss:"Literaturübersicht"
  • × year_i:[2000 TO 2010}
  1. Enser, P.G.B.: Visual image retrieval (2008) 0.02
    0.024625631 = product of:
      0.049251262 = sum of:
        0.049251262 = product of:
          0.098502524 = sum of:
            0.098502524 = weight(_text_:22 in 3281) [ClassicSimilarity], result of:
              0.098502524 = score(doc=3281,freq=2.0), product of:
                0.15912095 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045439374 = queryNorm
                0.61904186 = fieldWeight in 3281, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.125 = fieldNorm(doc=3281)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 1.2012 13:01:26
  2. Morris, S.A.: Mapping research specialties (2008) 0.02
    0.024625631 = product of:
      0.049251262 = sum of:
        0.049251262 = product of:
          0.098502524 = sum of:
            0.098502524 = weight(_text_:22 in 3962) [ClassicSimilarity], result of:
              0.098502524 = score(doc=3962,freq=2.0), product of:
                0.15912095 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045439374 = queryNorm
                0.61904186 = fieldWeight in 3962, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.125 = fieldNorm(doc=3962)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    13. 7.2008 9:30:22
  3. Fallis, D.: Social epistemology and information science (2006) 0.02
    0.024625631 = product of:
      0.049251262 = sum of:
        0.049251262 = product of:
          0.098502524 = sum of:
            0.098502524 = weight(_text_:22 in 4368) [ClassicSimilarity], result of:
              0.098502524 = score(doc=4368,freq=2.0), product of:
                0.15912095 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045439374 = queryNorm
                0.61904186 = fieldWeight in 4368, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.125 = fieldNorm(doc=4368)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    13. 7.2008 19:22:28
  4. Nicolaisen, J.: Citation analysis (2007) 0.02
    0.024625631 = product of:
      0.049251262 = sum of:
        0.049251262 = product of:
          0.098502524 = sum of:
            0.098502524 = weight(_text_:22 in 6091) [ClassicSimilarity], result of:
              0.098502524 = score(doc=6091,freq=2.0), product of:
                0.15912095 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045439374 = queryNorm
                0.61904186 = fieldWeight in 6091, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.125 = fieldNorm(doc=6091)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    13. 7.2008 19:53:22
  5. Bar-Ilan, J.: ¬The use of Web search engines in information science research (2003) 0.02
    0.021425933 = product of:
      0.042851865 = sum of:
        0.042851865 = product of:
          0.08570373 = sum of:
            0.08570373 = weight(_text_:i in 4271) [ClassicSimilarity], result of:
              0.08570373 = score(doc=4271,freq=8.0), product of:
                0.17138503 = queryWeight, product of:
                  3.7717297 = idf(docFreq=2765, maxDocs=44218)
                  0.045439374 = queryNorm
                0.50006545 = fieldWeight in 4271, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.7717297 = idf(docFreq=2765, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4271)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The World Wide Web was created in 1989, but it has already become a major information channel and source, influencing our everyday lives, commercial transactions, and scientific communication, to mention just a few areas. The seventeenth-century philosopher Descartes proclaimed, "I think, therefore I am" (cogito, ergo sum). Today the Web is such an integral part of our lives that we could rephrase Descartes' statement as "I have a Web presence, therefore I am." Because many people, companies, and organizations take this notion seriously, in addition to more substantial reasons for publishing information an the Web, the number of Web pages is in the billions and growing constantly. However, it is not sufficient to have a Web presence; tools that enable users to locate Web pages are needed as well. The major tools for discovering and locating information an the Web are search engines. This review discusses the use of Web search engines in information science research. Before going into detail, we should define the terms "information science," "Web search engine," and "use" in the context of this review.
  6. Blair, D.C.: Information retrieval and the philosophy of language (2002) 0.01
    0.014283955 = product of:
      0.02856791 = sum of:
        0.02856791 = product of:
          0.05713582 = sum of:
            0.05713582 = weight(_text_:i in 4283) [ClassicSimilarity], result of:
              0.05713582 = score(doc=4283,freq=8.0), product of:
                0.17138503 = queryWeight, product of:
                  3.7717297 = idf(docFreq=2765, maxDocs=44218)
                  0.045439374 = queryNorm
                0.33337694 = fieldWeight in 4283, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.7717297 = idf(docFreq=2765, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4283)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Information retrieval - the retrieval, primarily, of documents or textual material - is fundamentally a linguistic process. At the very least we must describe what we want and match that description with descriptions of the information that is available to us. Furthermore, when we describe what we want, we must mean something by that description. This is a deceptively simple act, but such linguistic events have been the grist for philosophical analysis since Aristotle. Although there are complexities involved in referring to authors, document types, or other categories of information retrieval context, here I wish to focus an one of the most problematic activities in information retrieval: the description of the intellectual content of information items. And even though I take information retrieval to involve the description and retrieval of written text, what I say here is applicable to any information item whose intellectual content can be described for retrieval-books, documents, images, audio clips, video clips, scientific specimens, engineering schematics, and so forth. For convenience, though, I will refer only to the description and retrieval of documents. The description of intellectual content can go wrong in many obvious ways. We may describe what we want incorrectly; we may describe it correctly but in such general terms that its description is useless for retrieval; or we may describe what we want correctly, but misinterpret the descriptions of available information, and thereby match our description of what we want incorrectly. From a linguistic point of view, we can be misunderstood in the process of retrieval in many ways. Because the philosophy of language deals specifically with how we are understood and mis-understood, it should have some use for understanding the process of description in information retrieval. First, however, let us examine more closely the kinds of misunderstandings that can occur in information retrieval. We use language in searching for information in two principal ways. We use it to describe what we want and to discriminate what we want from other information that is available to us but that we do not want. Description and discrimination together articulate the goals of the information search process; they also delineate the two principal ways in which language can fail us in this process. Van Rijsbergen (1979) was the first to make this distinction, calling them "representation" and "discrimination.""
  7. Kim, K.-S.: Recent work in cataloging and classification, 2000-2002 (2003) 0.01
    0.0123128155 = product of:
      0.024625631 = sum of:
        0.024625631 = product of:
          0.049251262 = sum of:
            0.049251262 = weight(_text_:22 in 152) [ClassicSimilarity], result of:
              0.049251262 = score(doc=152,freq=2.0), product of:
                0.15912095 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045439374 = queryNorm
                0.30952093 = fieldWeight in 152, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=152)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    10. 9.2000 17:38:22
  8. El-Sherbini, M.A.: Cataloging and classification : review of the literature 2005-06 (2008) 0.01
    0.0123128155 = product of:
      0.024625631 = sum of:
        0.024625631 = product of:
          0.049251262 = sum of:
            0.049251262 = weight(_text_:22 in 249) [ClassicSimilarity], result of:
              0.049251262 = score(doc=249,freq=2.0), product of:
                0.15912095 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045439374 = queryNorm
                0.30952093 = fieldWeight in 249, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=249)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    10. 9.2000 17:38:22
  9. Miksa, S.D.: ¬The challenges of change : a review of cataloging and classification literature, 2003-2004 (2007) 0.01
    0.0123128155 = product of:
      0.024625631 = sum of:
        0.024625631 = product of:
          0.049251262 = sum of:
            0.049251262 = weight(_text_:22 in 266) [ClassicSimilarity], result of:
              0.049251262 = score(doc=266,freq=2.0), product of:
                0.15912095 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045439374 = queryNorm
                0.30952093 = fieldWeight in 266, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=266)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    10. 9.2000 17:38:22
  10. Denton, W.: Putting facets on the Web : an annotated bibliography (2003) 0.01
    0.010933876 = product of:
      0.021867752 = sum of:
        0.021867752 = product of:
          0.043735504 = sum of:
            0.043735504 = weight(_text_:i in 2467) [ClassicSimilarity], result of:
              0.043735504 = score(doc=2467,freq=12.0), product of:
                0.17138503 = queryWeight, product of:
                  3.7717297 = idf(docFreq=2765, maxDocs=44218)
                  0.045439374 = queryNorm
                0.25518858 = fieldWeight in 2467, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  3.7717297 = idf(docFreq=2765, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=2467)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This is a classified, annotated bibliography about how to design faceted classification systems and make them usable on the World Wide Web. It is the first of three works I will be doing. The second, based on the material here and elsewhere, will discuss how to actually make the faceted system and put it online. The third will be a report of how I did just that, what worked, what didn't, and what I learned. Almost every article or book listed here begins with an explanation of what a faceted classification system is, so I won't (but see Steckel in Background below if you don't already know). They all agree that faceted systems are very appropriate for the web. Even pre-web articles (such as Duncan's in Background, below) assert that hypertext and facets will go together well. Combined, it is possible to take a set of documents and classify them or apply subject headings to describe what they are about, then build a navigational structure so that any user, no matter how he or she approaches the material, no matter what his or her goals, can move and search in a way that makes sense to them, but still get to the same useful results as someone else following a different path to the same goal. There is no one way that everyone will always use when looking for information. The more flexible the organization of the information, the more accommodating it is. Facets are more flexible for hypertext browsing than any enumerative or hierarchical system.
    This bibliography is not meant to be exhaustive, but unfortunately it is not as complete as I wanted. Some books and articles are not be included, but they may be used in my future work. (These include two books and one article by B.C. Vickery: Faceted Classification Schemes (New Brunswick, NJ: Rutgers, 1966), Classification and Indexing in Science, 3rd ed. (London: Butterworths, 1975), and "Knowledge Representation: A Brief Review" (Journal of Documentation 42 no. 3 (September 1986): 145-159; and A.C. Foskett's "The Future of Faceted Classification" in The Future of Classification, edited by Rita Marcella and Arthur Maltby (Aldershot, England: Gower, 2000): 69-80). Nevertheless, I hope this bibliography will be useful for those both new to or familiar with faceted hypertext systems. Some very basic resources are listed, as well as some very advanced ones. Some example web sites are mentioned, but there is no detailed technical discussion of any software. The user interface to any web site is extremely important, and this is briefly mentioned in two or three places (for example the discussion of lawforwa.org (see Example Web Sites)). The larger question of how to display information graphically and with hypertext is outside the scope of this bibliography. There are five sections: Recommended, Background, Not Relevant, Example Web Sites, and Mailing Lists. Background material is either introductory, advanced, or of peripheral interest, and can be read after the Recommended resources if the reader wants to know more. The Not Relevant category contains articles that may appear in bibliographies but are not relevant for my purposes.
  11. Nielsen, M.L.: Thesaurus construction : key issues and selected readings (2004) 0.01
    0.010773714 = product of:
      0.021547427 = sum of:
        0.021547427 = product of:
          0.043094855 = sum of:
            0.043094855 = weight(_text_:22 in 5006) [ClassicSimilarity], result of:
              0.043094855 = score(doc=5006,freq=2.0), product of:
                0.15912095 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045439374 = queryNorm
                0.2708308 = fieldWeight in 5006, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5006)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    18. 5.2006 20:06:22
  12. Weiss, A.K.; Carstens, T.V.: ¬The year's work in cataloging, 1999 (2001) 0.01
    0.010773714 = product of:
      0.021547427 = sum of:
        0.021547427 = product of:
          0.043094855 = sum of:
            0.043094855 = weight(_text_:22 in 6084) [ClassicSimilarity], result of:
              0.043094855 = score(doc=6084,freq=2.0), product of:
                0.15912095 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045439374 = queryNorm
                0.2708308 = fieldWeight in 6084, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=6084)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    10. 9.2000 17:38:22
  13. Genereux, C.: Building connections : a review of the serials literature 2004 through 2005 (2007) 0.01
    0.009234612 = product of:
      0.018469224 = sum of:
        0.018469224 = product of:
          0.036938448 = sum of:
            0.036938448 = weight(_text_:22 in 2548) [ClassicSimilarity], result of:
              0.036938448 = score(doc=2548,freq=2.0), product of:
                0.15912095 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045439374 = queryNorm
                0.23214069 = fieldWeight in 2548, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2548)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    10. 9.2000 17:38:22
  14. Galloway, P.: Preservation of digital objects (2003) 0.01
    0.008927471 = product of:
      0.017854942 = sum of:
        0.017854942 = product of:
          0.035709884 = sum of:
            0.035709884 = weight(_text_:i in 4275) [ClassicSimilarity], result of:
              0.035709884 = score(doc=4275,freq=2.0), product of:
                0.17138503 = queryWeight, product of:
                  3.7717297 = idf(docFreq=2765, maxDocs=44218)
                  0.045439374 = queryNorm
                0.20836058 = fieldWeight in 4275, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.7717297 = idf(docFreq=2765, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4275)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The preservation of digital objects (defined here as objects in digital form that require a computer to support their existence and display) is obviously an important practical issue for the information professions, with its importance growing daily as more information objects are produced in, or converted to, digital form. Yakel's (2001) review of the field provided a much-needed introduction. At the same time, the complexity of new digital objects continues to increase, challenging existing preservation efforts (Lee, Skattery, Lu, Tang, & McCrary, 2002). The field of information science itself is beginning to pay some reflexive attention to the creation of fragile and unpreservable digital objects. But these concerns focus often an the practical problems of short-term repurposing of digital objects rather than actual preservation, by which I mean the activity of carrying digital objects from one software generation to another, undertaken for purposes beyond the original reasons for creating the objects. For preservation in this sense to be possible, information science as a discipline needs to be active in the formulation of, and advocacy for, national information policies. Such policies will need to challenge the predominant cultural expectation of planned obsolescence for information resources, and cultural artifacts in general.
  15. Corbett, L.E.: Serials: review of the literature 2000-2003 (2006) 0.01
    0.00769551 = product of:
      0.01539102 = sum of:
        0.01539102 = product of:
          0.03078204 = sum of:
            0.03078204 = weight(_text_:22 in 1088) [ClassicSimilarity], result of:
              0.03078204 = score(doc=1088,freq=2.0), product of:
                0.15912095 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045439374 = queryNorm
                0.19345059 = fieldWeight in 1088, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1088)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    10. 9.2000 17:38:22
  16. Saracevic, T.: Relevance: a review of the literature and a framework for thinking on the notion in information science. Part II : nature and manifestations of relevance (2007) 0.01
    0.0071419775 = product of:
      0.014283955 = sum of:
        0.014283955 = product of:
          0.02856791 = sum of:
            0.02856791 = weight(_text_:i in 612) [ClassicSimilarity], result of:
              0.02856791 = score(doc=612,freq=2.0), product of:
                0.17138503 = queryWeight, product of:
                  3.7717297 = idf(docFreq=2765, maxDocs=44218)
                  0.045439374 = queryNorm
                0.16668847 = fieldWeight in 612, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.7717297 = idf(docFreq=2765, maxDocs=44218)
                  0.03125 = fieldNorm(doc=612)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Relevance is a, if not even the, key notion in information science in general and information retrieval in particular. This two-part critical review traces and synthesizes the scholarship on relevance over the past 30 years and provides an updated framework within which the still widely dissonant ideas and works about relevance might be interpreted and related. It is a continuation and update of a similar review that appeared in 1975 under the same title, considered here as being Part I. The present review is organized into two parts: Part II addresses the questions related to nature and manifestations of relevance, and Part III addresses questions related to relevance behavior and effects. In Part II, the nature of relevance is discussed in terms of meaning ascribed to relevance, theories used or proposed, and models that have been developed. The manifestations of relevance are classified as to several kinds of relevance that form an interdependent system of relevances. In Part III, relevance behavior and effects are synthesized using experimental and observational works that incorporate data. In both parts, each section concludes with a summary that in effect provides an interpretation and synthesis of contemporary thinking on the topic treated or suggests hypotheses for future research. Analyses of some of the major trends that shape relevance work are offered in conclusions.
  17. Cornelius, I.: Theorizing information for information science (2002) 0.01
    0.0062492304 = product of:
      0.012498461 = sum of:
        0.012498461 = product of:
          0.024996921 = sum of:
            0.024996921 = weight(_text_:i in 4244) [ClassicSimilarity], result of:
              0.024996921 = score(doc=4244,freq=2.0), product of:
                0.17138503 = queryWeight, product of:
                  3.7717297 = idf(docFreq=2765, maxDocs=44218)
                  0.045439374 = queryNorm
                0.14585242 = fieldWeight in 4244, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.7717297 = idf(docFreq=2765, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=4244)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
  18. Rogers, Y.: New theoretical approaches for human-computer interaction (2003) 0.01
    0.0062492304 = product of:
      0.012498461 = sum of:
        0.012498461 = product of:
          0.024996921 = sum of:
            0.024996921 = weight(_text_:i in 4270) [ClassicSimilarity], result of:
              0.024996921 = score(doc=4270,freq=2.0), product of:
                0.17138503 = queryWeight, product of:
                  3.7717297 = idf(docFreq=2765, maxDocs=44218)
                  0.045439374 = queryNorm
                0.14585242 = fieldWeight in 4270, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.7717297 = idf(docFreq=2765, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=4270)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    "Theory weary, theory leery, why can't I be theory cheery?" (Erickson, 2002, p. 269). The field of human-computer interaction (HCI) is rapidly expanding. Alongside the extensive technological developments that are taking place, a profusion of new theories, methods, and concerns has been imported into the field from a range of disciplines and contexts. An extensive critique of recent theoretical developments is presented here together with an overview of HCI practice. A consequence of bringing new theories into the field has been much insightful explication of HCI phenomena and also a broadening of the field's discourse. However, these theoretically based approaches have had limited impact an the practice of interaction design. This chapter discusses why this is so and suggests that different kinds of mechanisms are needed that will enable both designers and researchers to better articulate and theoretically ground the challenges facing them today. Human-computer interaction is bursting at the seams. Its mission, goals, and methods, well established in the '80s, have all greatly expanded to the point that "HCI is now effectively a boundless domain" (Barnard, May, Duke, & Duce, 2000, p. 221). Everything is in a state of flux: The theory driving research is changing, a flurry of new concepts is emerging, the domains and type of users being studied are diversifying, many of the ways of doing design are new, and much of what is being designed is significantly different. Although potentially much is to be gained from such rapid growth, the downside is an increasing lack of direction, structure, and coherence in the field. What was originally a bounded problem space with a clear focus and a small set of methods for designing computer systems that were easier and more efficient to use by a single user is now turning into a diffuse problem space with less clarity in terms of its objects of study, design foci, and investigative methods. Instead, aspirations of overcoming the Digital Divide, by providing universal accessibility, have become major concerns (e.g., Shneiderman, 2002a). The move toward greater openness in the field means that many more topics, areas, and approaches are now considered acceptable in the worlds of research and practice.