Search (1 results, page 1 of 1)

  • × author_ss:"Efron, M."
  • × theme_ss:"Retrievalalgorithmen"
  1. Efron, M.; Winget, M.: Query polyrepresentation for ranking retrieval systems without relevance judgments (2010) 0.01
    0.013592264 = product of:
      0.027184527 = sum of:
        0.027184527 = product of:
          0.054369055 = sum of:
            0.054369055 = weight(_text_:k in 3469) [ClassicSimilarity], result of:
              0.054369055 = score(doc=3469,freq=4.0), product of:
                0.16245733 = queryWeight, product of:
                  3.569778 = idf(docFreq=3384, maxDocs=44218)
                  0.045509085 = queryNorm
                0.33466667 = fieldWeight in 3469, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.569778 = idf(docFreq=3384, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3469)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Ranking information retrieval (IR) systems with respect to their effectiveness is a crucial operation during IR evaluation, as well as during data fusion. This article offers a novel method of approaching the system-ranking problem, based on the widely studied idea of polyrepresentation. The principle of polyrepresentation suggests that a single information need can be represented by many query articulations-what we call query aspects. By skimming the top k (where k is small) documents retrieved by a single system for multiple query aspects, we collect a set of documents that are likely to be relevant to a given test topic. Labeling these skimmed documents as putatively relevant lets us build pseudorelevance judgments without undue human intervention. We report experiments where using these pseudorelevance judgments delivers a rank ordering of IR systems that correlates highly with rankings based on human relevance judgments.