Search (17 results, page 1 of 1)

  • × author_ss:"Leydesdorff, L."
  1. Leydesdorff, L.; Bornmann, L.: How fractional counting of citations affects the impact factor : normalization in terms of differences in citation potentials among fields of science (2011) 0.03
    0.031199675 = product of:
      0.06239935 = sum of:
        0.06239935 = sum of:
          0.031563994 = weight(_text_:b in 4186) [ClassicSimilarity], result of:
            0.031563994 = score(doc=4186,freq=2.0), product of:
              0.16126883 = queryWeight, product of:
                3.542962 = idf(docFreq=3476, maxDocs=44218)
                0.045518078 = queryNorm
              0.19572285 = fieldWeight in 4186, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.542962 = idf(docFreq=3476, maxDocs=44218)
                0.0390625 = fieldNorm(doc=4186)
          0.030835358 = weight(_text_:22 in 4186) [ClassicSimilarity], result of:
            0.030835358 = score(doc=4186,freq=2.0), product of:
              0.15939656 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.045518078 = queryNorm
              0.19345059 = fieldWeight in 4186, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=4186)
      0.5 = coord(1/2)
    
    Abstract
    The Impact Factors (IFs) of the Institute for Scientific Information suffer from a number of drawbacks, among them the statistics-Why should one use the mean and not the median?-and the incomparability among fields of science because of systematic differences in citation behavior among fields. Can these drawbacks be counteracted by fractionally counting citation weights instead of using whole numbers in the numerators? (a) Fractional citation counts are normalized in terms of the citing sources and thus would take into account differences in citation behavior among fields of science. (b) Differences in the resulting distributions can be tested statistically for their significance at different levels of aggregation. (c) Fractional counting can be generalized to any document set including journals or groups of journals, and thus the significance of differences among both small and large sets can be tested. A list of fractionally counted IFs for 2008 is available online at http:www.leydesdorff.net/weighted_if/weighted_if.xls The between-group variance among the 13 fields of science identified in the U.S. Science and Engineering Indicators is no longer statistically significant after this normalization. Although citation behavior differs largely between disciplines, the reflection of these differences in fractionally counted citation distributions can not be used as a reliable instrument for the classification.
    Date
    22. 1.2011 12:51:07
  2. Leydesdorff, L.; Opthof, T.: Scopus's source normalized impact per paper (SNIP) versus a journal impact factor based on fractional counting of citations (2010) 0.01
    0.009469198 = product of:
      0.018938396 = sum of:
        0.018938396 = product of:
          0.037876792 = sum of:
            0.037876792 = weight(_text_:b in 4107) [ClassicSimilarity], result of:
              0.037876792 = score(doc=4107,freq=2.0), product of:
                0.16126883 = queryWeight, product of:
                  3.542962 = idf(docFreq=3476, maxDocs=44218)
                  0.045518078 = queryNorm
                0.23486741 = fieldWeight in 4107, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.542962 = idf(docFreq=3476, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4107)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Impact factors (and similar measures such as the Scimago Journal Rankings) suffer from two problems: (a) citation behavior varies among fields of science and, therefore, leads to systematic differences, and (b) there are no statistics to inform us whether differences are significant. The recently introduced "source normalized impact per paper" indicator of Scopus tries to remedy the first of these two problems, but a number of normalization decisions are involved, which makes it impossible to test for significance. Using fractional counting of citations-based on the assumption that impact is proportionate to the number of references in the citing documents-citations can be contextualized at the paper level and aggregated impacts of sets can be tested for their significance. It can be shown that the weighted impact of Annals of Mathematics (0.247) is not so much lower than that of Molecular Cell (0.386) despite a five-f old difference between their impact factors (2.793 and 13.156, respectively).
  3. Leydesdorff, L.; Radicchi, F.; Bornmann, L.; Castellano, C.; Nooy, W. de: Field-normalized impact factors (IFs) : a comparison of rescaling and fractionally counted IFs (2013) 0.01
    0.009469198 = product of:
      0.018938396 = sum of:
        0.018938396 = product of:
          0.037876792 = sum of:
            0.037876792 = weight(_text_:b in 1108) [ClassicSimilarity], result of:
              0.037876792 = score(doc=1108,freq=2.0), product of:
                0.16126883 = queryWeight, product of:
                  3.542962 = idf(docFreq=3476, maxDocs=44218)
                  0.045518078 = queryNorm
                0.23486741 = fieldWeight in 1108, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.542962 = idf(docFreq=3476, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1108)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Two methods for comparing impact factors and citation rates across fields of science are tested against each other using citations to the 3,705 journals in the Science Citation Index 2010 (CD-Rom version of SCI) and the 13 field categories used for the Science and Engineering Indicators of the U.S. National Science Board. We compare (a) normalization by counting citations in proportion to the length of the reference list (1/N of references) with (b) rescaling by dividing citation scores by the arithmetic mean of the citation rate of the cluster. Rescaling is analytical and therefore independent of the quality of the attribution to the sets, whereas fractional counting provides an empirical strategy for normalization among sets (by evaluating the between-group variance). By the fairness test of Radicchi and Castellano (), rescaling outperforms fractional counting of citations for reasons that we consider.
  4. Leydesdorff, L.; Goldstone, R.L.: Interdisciplinarity at the journal and specialty level : the changing knowledge bases of the journal cognitive science (2014) 0.01
    0.009469198 = product of:
      0.018938396 = sum of:
        0.018938396 = product of:
          0.037876792 = sum of:
            0.037876792 = weight(_text_:b in 1187) [ClassicSimilarity], result of:
              0.037876792 = score(doc=1187,freq=2.0), product of:
                0.16126883 = queryWeight, product of:
                  3.542962 = idf(docFreq=3476, maxDocs=44218)
                  0.045518078 = queryNorm
                0.23486741 = fieldWeight in 1187, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.542962 = idf(docFreq=3476, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1187)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Using the referencing patterns in articles in Cognitive Science over three decades, we analyze the knowledge base of this literature in terms of its changing disciplinary composition. Three periods are distinguished: (A) construction of the interdisciplinary space in the 1980s, (B) development of an interdisciplinary orientation in the 1990s, and (C) reintegration into "cognitive psychology" in the 2000s. The fluidity and fuzziness of the interdisciplinary delineations in the different visualizations can be reduced and clarified using factor analysis. We also explore newly available routines ("CorText") to analyze this development in terms of "tubes" using an alluvial map and compare the results with an animation (using "Visone"). The historical specificity of this development can be compared with the development of "artificial intelligence" into an integrated specialty during this same period. Interdisciplinarity should be defined differently at the level of journals and of specialties.
  5. Leydesdorff, L.: ¬The construction and globalization of the knowledge base in inter-human communication systems (2003) 0.01
    0.009250606 = product of:
      0.018501213 = sum of:
        0.018501213 = product of:
          0.037002426 = sum of:
            0.037002426 = weight(_text_:22 in 1621) [ClassicSimilarity], result of:
              0.037002426 = score(doc=1621,freq=2.0), product of:
                0.15939656 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045518078 = queryNorm
                0.23214069 = fieldWeight in 1621, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1621)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 5.2003 19:48:04
  6. Leydesdorff, L.: Can networks of journal-journal citations be used as indicators of change in the social sciences? (2003) 0.01
    0.009250606 = product of:
      0.018501213 = sum of:
        0.018501213 = product of:
          0.037002426 = sum of:
            0.037002426 = weight(_text_:22 in 4460) [ClassicSimilarity], result of:
              0.037002426 = score(doc=4460,freq=2.0), product of:
                0.15939656 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045518078 = queryNorm
                0.23214069 = fieldWeight in 4460, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4460)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    6.11.2005 19:02:22
  7. Leydesdorff, L.; Sun, Y.: National and international dimensions of the Triple Helix in Japan : university-industry-government versus international coauthorship relations (2009) 0.01
    0.009250606 = product of:
      0.018501213 = sum of:
        0.018501213 = product of:
          0.037002426 = sum of:
            0.037002426 = weight(_text_:22 in 2761) [ClassicSimilarity], result of:
              0.037002426 = score(doc=2761,freq=2.0), product of:
                0.15939656 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045518078 = queryNorm
                0.23214069 = fieldWeight in 2761, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2761)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 3.2009 19:07:20
  8. Leydesdorff, L.; Bornmann, L.; Wagner, C.S.: ¬The relative influences of government funding and international collaboration on citation impact (2019) 0.01
    0.009250606 = product of:
      0.018501213 = sum of:
        0.018501213 = product of:
          0.037002426 = sum of:
            0.037002426 = weight(_text_:22 in 4681) [ClassicSimilarity], result of:
              0.037002426 = score(doc=4681,freq=2.0), product of:
                0.15939656 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045518078 = queryNorm
                0.23214069 = fieldWeight in 4681, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4681)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    8. 1.2019 18:22:45
  9. Leydesdorff, L.; Moya-Anegón, F.de; Guerrero-Bote, V.P.: Journal maps on the basis of Scopus data : a comparison with the Journal Citation Reports of the ISI (2010) 0.01
    0.007890998 = product of:
      0.015781997 = sum of:
        0.015781997 = product of:
          0.031563994 = sum of:
            0.031563994 = weight(_text_:b in 3335) [ClassicSimilarity], result of:
              0.031563994 = score(doc=3335,freq=2.0), product of:
                0.16126883 = queryWeight, product of:
                  3.542962 = idf(docFreq=3476, maxDocs=44218)
                  0.045518078 = queryNorm
                0.19572285 = fieldWeight in 3335, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.542962 = idf(docFreq=3476, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3335)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Using the Scopus dataset (1996-2007) a grand matrix of aggregated journal-journal citations was constructed. This matrix can be compared in terms of the network structures with the matrix contained in the Journal Citation Reports (JCR) of the Institute of Scientific Information (ISI). Because the Scopus database contains a larger number of journals and covers the humanities, one would expect richer maps. However, the matrix is in this case sparser than in the case of the ISI data. This is because of (a) the larger number of journals covered by Scopus and (b) the historical record of citations older than 10 years contained in the ISI database. When the data is highly structured, as in the case of large journals, the maps are comparable, although one may have to vary a threshold (because of the differences in densities). In the case of interdisciplinary journals and journals in the social sciences and humanities, the new database does not add a lot to what is possible with the ISI databases.
  10. Leydesdorff, L.; Hammarfelt, B.: ¬The structure of the Arts & Humanities Citation Index : a mapping on the basis of aggregated citations among 1,157 journals (2011) 0.01
    0.007890998 = product of:
      0.015781997 = sum of:
        0.015781997 = product of:
          0.031563994 = sum of:
            0.031563994 = weight(_text_:b in 4941) [ClassicSimilarity], result of:
              0.031563994 = score(doc=4941,freq=2.0), product of:
                0.16126883 = queryWeight, product of:
                  3.542962 = idf(docFreq=3476, maxDocs=44218)
                  0.045518078 = queryNorm
                0.19572285 = fieldWeight in 4941, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.542962 = idf(docFreq=3476, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4941)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
  11. Leydesdorff, L.; Zhou, P.; Bornmann, L.: How can journal impact factors be normalized across fields of science? : An assessment in terms of percentile ranks and fractional counts (2013) 0.01
    0.007890998 = product of:
      0.015781997 = sum of:
        0.015781997 = product of:
          0.031563994 = sum of:
            0.031563994 = weight(_text_:b in 532) [ClassicSimilarity], result of:
              0.031563994 = score(doc=532,freq=2.0), product of:
                0.16126883 = queryWeight, product of:
                  3.542962 = idf(docFreq=3476, maxDocs=44218)
                  0.045518078 = queryNorm
                0.19572285 = fieldWeight in 532, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.542962 = idf(docFreq=3476, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=532)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Using the CD-ROM version of the Science Citation Index 2010 (N = 3,705 journals), we study the (combined) effects of (a) fractional counting on the impact factor (IF) and (b) transformation of the skewed citation distributions into a distribution of 100 percentiles and six percentile rank classes (top-1%, top-5%, etc.). Do these approaches lead to field-normalized impact measures for journals? In addition to the 2-year IF (IF2), we consider the 5-year IF (IF5), the respective numerators of these IFs, and the number of Total Cites, counted both as integers and fractionally. These various indicators are tested against the hypothesis that the classification of journals into 11 broad fields by PatentBoard/NSF (National Science Foundation) provides statistically significant between-field effects. Using fractional counting the between-field variance is reduced by 91.7% in the case of IF5, and by 79.2% in the case of IF2. However, the differences in citation counts are not significantly affected by fractional counting. These results accord with previous studies, but the longer citation window of a fractionally counted IF5 can lead to significant improvement in the normalization across fields.
  12. Leydesdorff, L.; Park, H.W.; Wagner, C.: International coauthorship relations in the Social Sciences Citation Index : is internationalization leading the Network? (2014) 0.01
    0.007890998 = product of:
      0.015781997 = sum of:
        0.015781997 = product of:
          0.031563994 = sum of:
            0.031563994 = weight(_text_:b in 1505) [ClassicSimilarity], result of:
              0.031563994 = score(doc=1505,freq=2.0), product of:
                0.16126883 = queryWeight, product of:
                  3.542962 = idf(docFreq=3476, maxDocs=44218)
                  0.045518078 = queryNorm
                0.19572285 = fieldWeight in 1505, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.542962 = idf(docFreq=3476, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1505)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    International coauthorship relations have increasingly shaped another dynamic in the natural and life sciences during recent decades. However, much less is known about such internationalization in the social sciences. In this study, we analyze international and domestic coauthorship relations of all citable items in the DVD version of the Social Sciences Citation Index 2011 (SSCI). Network statistics indicate 4 groups of nations: (a) an Asian-Pacific one to which all Anglo-Saxon nations (including the United Kingdom and Ireland) are attributed, (b) a continental European one including also the Latin-American countries, (c) the Scandinavian nations, and (d) a community of African nations. Within the EU-28, 11 of the EU-15 states have dominant positions. In many respects, the network parameters are not so different from the Science Citation Index. In addition to these descriptive statistics, we address the question of the relative weights of the international versus domestic networks. An information-theoretical test is proposed at the level of organizational addresses within each nation; the results are mixed, but the international dimension is more important than the national one in the aggregated sets (as in the Science Citation Index). In some countries (e.g., France), however, the national distribution is leading more than the international one. Decomposition of the United States in terms of states shows a similarly mixed result; more U.S. states are domestically oriented in the SSCI and more internationally in the SCI. The international networks have grown during the last decades in addition to the national ones but not by replacing them.
  13. Leydesdorff, L.; Ahrweiler, P.: In search of a network theory of innovations : relations, positions, and perspectives (2014) 0.01
    0.007890998 = product of:
      0.015781997 = sum of:
        0.015781997 = product of:
          0.031563994 = sum of:
            0.031563994 = weight(_text_:b in 1531) [ClassicSimilarity], result of:
              0.031563994 = score(doc=1531,freq=2.0), product of:
                0.16126883 = queryWeight, product of:
                  3.542962 = idf(docFreq=3476, maxDocs=44218)
                  0.045518078 = queryNorm
                0.19572285 = fieldWeight in 1531, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.542962 = idf(docFreq=3476, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1531)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    As a complement to Nelson and Winter's (1977) article titled "In Search of a Useful Theory of Innovation," a sociological perspective on innovation networks can be elaborated using Luhmann's social systems theory, on the one hand, and Latour's "sociology of translations," on the other. Because of a common focus on communication, these perspectives can be combined as a set of methodologies. Latour's sociology of translations specifies a mechanism for generating variation in relations ("associations"), whereas Luhmann's systems perspective enables the specification of (functionally different) selection environments such as markets, professional organizations, and political control. Selection environments can be considered as mechanisms of social coordination that can self-organize-beyond the control of human agency-into regimes in terms of interacting codes of communication. Unlike relatively globalized regimes, technological trajectories are organized locally in "landscapes." A resulting "duality of structure" (Giddens, 1979) between the historical organization of trajectories and evolutionary self-organization at the regime level can be expected to drive innovation cycles. Reflexive translations add a third layer of perspectives to (a) the relational analysis of observable links that shape trajectories and (b) the positional analysis of networks in terms of latent dimensions. These three operations can be studied in a single framework, but using different methodologies. Latour's first-order associations can then be analytically distinguished from second-order translations in terms of requiring other communicative competencies. The resulting operations remain infrareflexively nested, and can therefore be used for innovative reconstructions of previously constructed boundaries.
  14. Bauer, J.; Leydesdorff, L.; Bornmann, L.: Highly cited papers in Library and Information Science (LIS) : authors, institutions, and network structures (2016) 0.01
    0.007890998 = product of:
      0.015781997 = sum of:
        0.015781997 = product of:
          0.031563994 = sum of:
            0.031563994 = weight(_text_:b in 3231) [ClassicSimilarity], result of:
              0.031563994 = score(doc=3231,freq=2.0), product of:
                0.16126883 = queryWeight, product of:
                  3.542962 = idf(docFreq=3476, maxDocs=44218)
                  0.045518078 = queryNorm
                0.19572285 = fieldWeight in 3231, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.542962 = idf(docFreq=3476, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3231)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    As a follow-up to the highly cited authors list published by Thomson Reuters in June 2014, we analyzed the top 1% most frequently cited papers published between 2002 and 2012 included in the Web of Science (WoS) subject category "Information Science & Library Science." In all, 798 authors contributed to 305 top 1% publications; these authors were employed at 275 institutions. The authors at Harvard University contributed the largest number of papers, when the addresses are whole-number counted. However, Leiden University leads the ranking if fractional counting is used. Twenty-three of the 798 authors were also listed as most highly cited authors by Thomson Reuters in June 2014 (http://highlycited.com/). Twelve of these 23 authors were involved in publishing 4 or more of the 305 papers under study. Analysis of coauthorship relations among the 798 highly cited scientists shows that coauthorships are based on common interests in a specific topic. Three topics were important between 2002 and 2012: (a) collection and exploitation of information in clinical practices; (b) use of the Internet in public communication and commerce; and (c) scientometrics.
  15. Leydesdorff, L.; Bornmann, L.; Mingers, J.: Statistical significance and effect sizes of differences among research universities at the level of nations and worldwide based on the Leiden rankings (2019) 0.01
    0.007890998 = product of:
      0.015781997 = sum of:
        0.015781997 = product of:
          0.031563994 = sum of:
            0.031563994 = weight(_text_:b in 5225) [ClassicSimilarity], result of:
              0.031563994 = score(doc=5225,freq=2.0), product of:
                0.16126883 = queryWeight, product of:
                  3.542962 = idf(docFreq=3476, maxDocs=44218)
                  0.045518078 = queryNorm
                0.19572285 = fieldWeight in 5225, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.542962 = idf(docFreq=3476, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5225)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The Leiden Rankings can be used for grouping research universities by considering universities which are not statistically significantly different as homogeneous sets. The groups and intergroup relations can be analyzed and visualized using tools from network analysis. Using the so-called "excellence indicator" PPtop-10%-the proportion of the top-10% most-highly-cited papers assigned to a university-we pursue a classification using (a) overlapping stability intervals, (b) statistical-significance tests, and (c) effect sizes of differences among 902 universities in 54 countries; we focus on the UK, Germany, Brazil, and the USA as national examples. Although the groupings remain largely the same using different statistical significance levels or overlapping stability intervals, these classifications are uncorrelated with those based on effect sizes. Effect sizes for the differences between universities are small (w < .2). The more detailed analysis of universities at the country level suggests that distinctions beyond three or perhaps four groups of universities (high, middle, low) may not be meaningful. Given similar institutional incentives, isomorphism within each eco-system of universities should not be underestimated. Our results suggest that networks based on overlapping stability intervals can provide a first impression of the relevant groupings among universities. However, the clusters are not well-defined divisions between groups of universities.
  16. Hellsten, I.; Leydesdorff, L.: ¬The construction of interdisciplinarity : the development of the knowledge base and programmatic focus of the journal Climatic Change, 1977-2013 (2016) 0.01
    0.0077088396 = product of:
      0.015417679 = sum of:
        0.015417679 = product of:
          0.030835358 = sum of:
            0.030835358 = weight(_text_:22 in 3089) [ClassicSimilarity], result of:
              0.030835358 = score(doc=3089,freq=2.0), product of:
                0.15939656 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045518078 = queryNorm
                0.19345059 = fieldWeight in 3089, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3089)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    24. 8.2016 17:53:22
  17. Leydesdorff, L.; Johnson, M.W.; Ivanova, I.: Toward a calculus of redundancy : signification, codification, and anticipation in cultural evolution (2018) 0.01
    0.0077088396 = product of:
      0.015417679 = sum of:
        0.015417679 = product of:
          0.030835358 = sum of:
            0.030835358 = weight(_text_:22 in 4463) [ClassicSimilarity], result of:
              0.030835358 = score(doc=4463,freq=2.0), product of:
                0.15939656 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045518078 = queryNorm
                0.19345059 = fieldWeight in 4463, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4463)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    29. 9.2018 11:22:09