Search (31 results, page 2 of 2)

  • × theme_ss:"Automatisches Klassifizieren"
  1. Pfeffer, M.: Automatische Vergabe von RVK-Notationen mittels fallbasiertem Schließen (2009) 0.01
    0.009250606 = product of:
      0.018501213 = sum of:
        0.018501213 = product of:
          0.037002426 = sum of:
            0.037002426 = weight(_text_:22 in 3051) [ClassicSimilarity], result of:
              0.037002426 = score(doc=3051,freq=2.0), product of:
                0.15939656 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045518078 = queryNorm
                0.23214069 = fieldWeight in 3051, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3051)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 8.2009 19:51:28
  2. Zhu, W.Z.; Allen, R.B.: Document clustering using the LSI subspace signature model (2013) 0.01
    0.009250606 = product of:
      0.018501213 = sum of:
        0.018501213 = product of:
          0.037002426 = sum of:
            0.037002426 = weight(_text_:22 in 690) [ClassicSimilarity], result of:
              0.037002426 = score(doc=690,freq=2.0), product of:
                0.15939656 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045518078 = queryNorm
                0.23214069 = fieldWeight in 690, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=690)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    23. 3.2013 13:22:36
  3. Egbert, J.; Biber, D.; Davies, M.: Developing a bottom-up, user-based method of web register classification (2015) 0.01
    0.009250606 = product of:
      0.018501213 = sum of:
        0.018501213 = product of:
          0.037002426 = sum of:
            0.037002426 = weight(_text_:22 in 2158) [ClassicSimilarity], result of:
              0.037002426 = score(doc=2158,freq=2.0), product of:
                0.15939656 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045518078 = queryNorm
                0.23214069 = fieldWeight in 2158, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2158)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    4. 8.2015 19:22:04
  4. Ribeiro-Neto, B.; Laender, A.H.F.; Lima, L.R.S. de: ¬An experimental study in automatically categorizing medical documents (2001) 0.01
    0.007890998 = product of:
      0.015781997 = sum of:
        0.015781997 = product of:
          0.031563994 = sum of:
            0.031563994 = weight(_text_:b in 5702) [ClassicSimilarity], result of:
              0.031563994 = score(doc=5702,freq=2.0), product of:
                0.16126883 = queryWeight, product of:
                  3.542962 = idf(docFreq=3476, maxDocs=44218)
                  0.045518078 = queryNorm
                0.19572285 = fieldWeight in 5702, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.542962 = idf(docFreq=3476, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5702)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
  5. Calado, P.; Cristo, M.; Gonçalves, M.A.; Moura, E.S. de; Ribeiro-Neto, B.; Ziviani, N.: Link-based similarity measures for the classification of Web documents (2006) 0.01
    0.007890998 = product of:
      0.015781997 = sum of:
        0.015781997 = product of:
          0.031563994 = sum of:
            0.031563994 = weight(_text_:b in 4921) [ClassicSimilarity], result of:
              0.031563994 = score(doc=4921,freq=2.0), product of:
                0.16126883 = queryWeight, product of:
                  3.542962 = idf(docFreq=3476, maxDocs=44218)
                  0.045518078 = queryNorm
                0.19572285 = fieldWeight in 4921, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.542962 = idf(docFreq=3476, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4921)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
  6. Han, K.; Rezapour, R.; Nakamura, K.; Devkota, D.; Miller, D.C.; Diesner, J.: ¬An expert-in-the-loop method for domain-specific document categorization based on small training data (2023) 0.01
    0.007890998 = product of:
      0.015781997 = sum of:
        0.015781997 = product of:
          0.031563994 = sum of:
            0.031563994 = weight(_text_:b in 967) [ClassicSimilarity], result of:
              0.031563994 = score(doc=967,freq=2.0), product of:
                0.16126883 = queryWeight, product of:
                  3.542962 = idf(docFreq=3476, maxDocs=44218)
                  0.045518078 = queryNorm
                0.19572285 = fieldWeight in 967, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.542962 = idf(docFreq=3476, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=967)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Automated text categorization methods are of broad relevance for domain experts since they free researchers and practitioners from manual labeling, save their resources (e.g., time, labor), and enrich the data with information helpful to study substantive questions. Despite a variety of newly developed categorization methods that require substantial amounts of annotated data, little is known about how to build models when (a) labeling texts with categories requires substantial domain expertise and/or in-depth reading, (b) only a few annotated documents are available for model training, and (c) no relevant computational resources, such as pretrained models, are available. In a collaboration with environmental scientists who study the socio-ecological impact of funded biodiversity conservation projects, we develop a method that integrates deep domain expertise with computational models to automatically categorize project reports based on a small sample of 93 annotated documents. Our results suggest that domain expertise can improve automated categorization and that the magnitude of these improvements is influenced by the experts' understanding of categories and their confidence in their annotation, as well as data sparsity and additional category characteristics such as the portion of exclusive keywords that can identify a category.
  7. Mengle, S.; Goharian, N.: Passage detection using text classification (2009) 0.01
    0.0077088396 = product of:
      0.015417679 = sum of:
        0.015417679 = product of:
          0.030835358 = sum of:
            0.030835358 = weight(_text_:22 in 2765) [ClassicSimilarity], result of:
              0.030835358 = score(doc=2765,freq=2.0), product of:
                0.15939656 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045518078 = queryNorm
                0.19345059 = fieldWeight in 2765, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2765)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 3.2009 19:14:43
  8. Billal, B.; Fonseca, A.; Sadat, F.; Lounis, H.: Semi-supervised learning and social media text analysis towards multi-labeling categorization (2017) 0.01
    0.0063127987 = product of:
      0.012625597 = sum of:
        0.012625597 = product of:
          0.025251195 = sum of:
            0.025251195 = weight(_text_:b in 4095) [ClassicSimilarity], result of:
              0.025251195 = score(doc=4095,freq=2.0), product of:
                0.16126883 = queryWeight, product of:
                  3.542962 = idf(docFreq=3476, maxDocs=44218)
                  0.045518078 = queryNorm
                0.15657827 = fieldWeight in 4095, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.542962 = idf(docFreq=3476, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4095)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
  9. Altinel, B.; Ganiz, M.C.: Semantic text classification : a survey of past and recent advances (2018) 0.01
    0.0063127987 = product of:
      0.012625597 = sum of:
        0.012625597 = product of:
          0.025251195 = sum of:
            0.025251195 = weight(_text_:b in 5051) [ClassicSimilarity], result of:
              0.025251195 = score(doc=5051,freq=2.0), product of:
                0.16126883 = queryWeight, product of:
                  3.542962 = idf(docFreq=3476, maxDocs=44218)
                  0.045518078 = queryNorm
                0.15657827 = fieldWeight in 5051, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.542962 = idf(docFreq=3476, maxDocs=44218)
                  0.03125 = fieldNorm(doc=5051)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
  10. Khoo, C.S.G.; Ng, K.; Ou, S.: ¬An exploratory study of human clustering of Web pages (2003) 0.01
    0.0061670714 = product of:
      0.012334143 = sum of:
        0.012334143 = product of:
          0.024668286 = sum of:
            0.024668286 = weight(_text_:22 in 2741) [ClassicSimilarity], result of:
              0.024668286 = score(doc=2741,freq=2.0), product of:
                0.15939656 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045518078 = queryNorm
                0.15476047 = fieldWeight in 2741, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2741)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    12. 9.2004 9:56:22
  11. Oberhauser, O.: Automatisches Klassifizieren : Entwicklungsstand - Methodik - Anwendungsbereiche (2005) 0.01
    0.0055797785 = product of:
      0.011159557 = sum of:
        0.011159557 = product of:
          0.022319114 = sum of:
            0.022319114 = weight(_text_:b in 38) [ClassicSimilarity], result of:
              0.022319114 = score(doc=38,freq=4.0), product of:
                0.16126883 = queryWeight, product of:
                  3.542962 = idf(docFreq=3476, maxDocs=44218)
                  0.045518078 = queryNorm
                0.13839695 = fieldWeight in 38, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.542962 = idf(docFreq=3476, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=38)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Footnote
    Rez. in: VÖB-Mitteilungen 58(2005) H.3, S.102-104 (R.F. Müller); ZfBB 53(2006) H.5, S.282-283 (L. Svensson): "Das Sammeln und Verzeichnen elektronischer Ressourcen gehört in wissenschaftlichen Bibliotheken längst zum Alltag. Parallel dazu kündigt sich ein Paradigmenwechsel bei den Findmitteln an: Um einen effizienten und benutzerorientierten Zugang zu den gemischten Kollektionen bieten zu können, experimentieren einige bibliothekarische Diensteanbieter wie z. B. das hbz (http://suchen.hbz-nrw.de/dreilaender/), die Bibliothek der North Carolina State University (www.lib.ncsu.edu/) und demnächst vascoda (www.vascoda.de/) und der Librarians-Internet Index (www.lii.org/) zunehmend mit Suchmaschinentechnologie. Dabei wird angestrebt, nicht nur einen vollinvertierten Suchindex anzubieten, sondern auch das Browsing durch eine hierarchisch geordnete Klassifikation. Von den Daten in den deutschen Verbunddatenbanken ist jedoch nur ein kleiner Teil schon klassifikatorisch erschlossen. Fremddaten aus dem angloamerikanischen Bereich sind oft mit LCC und/oder DDC erschlossen, wobei die Library of Congress sich bei der DDCErschließung auf Titel, die hauptsächlich für die Public Libraries interessant sind, konzentriert. Die Deutsche Nationalbibliothek wird ab 2007 Printmedien und Hochschulschriften flächendeckend mit DDC erschließen. Es ist aber schon offensichtlich, dass v. a. im Bereich der elektronischen Publikationen die anfallenden Dokumentenmengen mit immer knapperen Personalressourcen nicht intellektuell erschlossen werden können, sondern dass neue Verfahren entwickelt werden müssen. Hier kommt Oberhausers Buch gerade richtig. Seit Anfang der 1990er Jahre sind mehrere Projekte zum Thema automatisches Klassifizieren durchgeführt worden. Wer sich in diese Thematik einarbeiten wollte oder sich für die Ergebnisse der größeren Projekte interessierte, konnte bislang auf keine Überblicksdarstellung zurückgreifen, sondern war auf eine Vielzahl von Einzeluntersuchungen sowie die Projektdokumentationen angewiesen. Oberhausers Darstellung, die auf einer Fülle von publizierter und grauer Literatur fußt, schließt diese Lücke. Das selbst gesetzte Ziel, einen guten Überblick über den momentanen Kenntnisstand und die Ergebnisse der einschlägigen Projekte verständlich zu vermitteln, erfüllt der Autor mit Bravour. Dabei ist anzumerken, dass er ein bibliothekarisches Grundwissen und mindestens grundlegende Kenntnisse über informationswissenschaftliche Grundbegriffe und Fragestellungen voraussetzt, wobei hier für den Einsteiger einige Hinweise auf einführende Darstellungen wünschenswert gewesen wären.
    Zum Inhalt Auf einen kurzen einleitenden Abschnitt folgt eine Einführung in die grundlegende Methodik des automatischen Klassifizierens. Oberhauser erklärt hier Begriffe wie Einfach- und Mehrfachklassifizierung, Klassen- und Dokumentzentrierung, und geht danach auf die hauptsächlichen Anwendungen der automatischen Klassifikation von Textdokumenten, maschinelle Lernverfahren und Techniken der Dimensionsreduktion bei der Indexierung ein. Zwei weitere Unterkapitel sind der Erstellung von Klassifikatoren und den Methoden für deren Auswertung gewidmet. Das Kapitel wird abgerundet von einer kurzen Auflistung einiger Softwareprodukte für automatisches Klassifizieren, die sowohl kommerzielle Software, als auch Projekte aus dem Open-Source-Bereich umfasst. Der Hauptteil des Buches ist den großen Projekten zur automatischen Erschließung von Webdokumenten gewidmet, die von OCLC (Scorpion) sowie an den Universitäten Lund (Nordic WAIS/WWW, DESIRE II), Wolverhampton (WWLib-TOS, WWLib-TNG, Old ACE, ACE) und Oldenburg (GERHARD, GERHARD II) durchgeführt worden sind. Der Autor beschreibt hier sehr detailliert - wobei der Detailliertheitsgrad unterschiedlich ist, je nachdem, was aus der Projektdokumentation geschlossen werden kann - die jeweilige Zielsetzung des Projektes, die verwendete Klassifikation, die methodische Vorgehensweise sowie die Evaluierungsmethoden und -ergebnisse. Sofern Querverweise zu anderen Projekten bestehen, werden auch diese besprochen. Der Verfasser geht hier sehr genau auf wichtige Aspekte wie Vokabularbildung, Textaufbereitung und Gewichtung ein, so dass der Leser eine gute Vorstellung von den Ansätzen und der möglichen Weiterentwicklung des Projektes bekommt. In einem weiteren Kapitel wird auf einige kleinere Projekte eingegangen, die dem für Bibliotheken besonders interessanten Thema des automatischen Klassifizierens von Büchern sowie den Bereichen Patentliteratur, Mediendokumentation und dem Einsatz bei Informationsdiensten gewidmet sind. Die Darstellung wird ergänzt von einem Literaturverzeichnis mit über 250 Titeln zu den konkreten Projekten sowie einem Abkürzungs- und einem Abbildungsverzeichnis. In der abschließenden Diskussion der beschriebenen Projekte wird einerseits auf die Bedeutung der einzelnen Projekte für den methodischen Fortschritt eingegangen, andererseits aber auch einiges an Kritik geäußert, v. a. bezüglich der mangelnden Auswertung der Projektergebnisse und des Fehlens an brauchbarer Dokumentation. So waren z. B. die Projektseiten des Projekts GERHARD (www.gerhard.de/) auf den Stand von 1998 eingefroren, zurzeit [11.07.06] sind sie überhaupt nicht mehr erreichbar. Mit einigem Erstaunen stellt Oberhauser auch fest, dass - abgesehen von der fast 15 Jahre alten Untersuchung von Larsen - »keine signifikanten Studien oder Anwendungen aus dem Bibliotheksbereich vorliegen« (S. 139). Wie der Autor aber selbst ergänzend ausführt, dürfte dies daran liegen, dass sich bibliografische Metadaten wegen des geringen Textumfangs sehr schlecht für automatische Klassifikation eignen, und dass - wie frühere Ergebnisse gezeigt haben - das übliche TF/IDF-Verfahren nicht für Katalogisate geeignet ist (ibd.).