Search (2 results, page 1 of 1)

  • × subject_ss:"Ontologies (Information retrieval)"
  1. Euzenat, J.; Shvaiko, P.: Ontology matching (2010) 0.02
    0.023962822 = product of:
      0.047925644 = sum of:
        0.047925644 = sum of:
          0.025738753 = weight(_text_:i in 168) [ClassicSimilarity], result of:
            0.025738753 = score(doc=168,freq=2.0), product of:
              0.15441231 = queryWeight, product of:
                3.7717297 = idf(docFreq=2765, maxDocs=44218)
                0.04093939 = queryNorm
              0.16668847 = fieldWeight in 168, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.7717297 = idf(docFreq=2765, maxDocs=44218)
                0.03125 = fieldNorm(doc=168)
          0.02218689 = weight(_text_:22 in 168) [ClassicSimilarity], result of:
            0.02218689 = score(doc=168,freq=2.0), product of:
              0.14336278 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.04093939 = queryNorm
              0.15476047 = fieldWeight in 168, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.03125 = fieldNorm(doc=168)
      0.5 = coord(1/2)
    
    Abstract
    Ontologies are viewed as the silver bullet for many applications, but in open or evolving systems, different parties can adopt different ontologies. This increases heterogeneity problems rather than reducing heterogeneity. This book proposes ontology matching as a solution to the problem of semantic heterogeneity, offering researchers and practitioners a uniform framework of reference to currently available work. The techniques presented apply to database schema matching, catalog integration, XML schema matching and more. Ontologies tend to be found everywhere. They are viewed as the silver bullet for many applications, such as database integration, peer-to-peer systems, e-commerce, semantic web services, or social networks. However, in open or evolving systems, such as the semantic web, different parties would, in general, adopt different ontologies. Thus, merely using ontologies, like using XML, does not reduce heterogeneity: it just raises heterogeneity problems to a higher level. Euzenat and Shvaiko's book is devoted to ontology matching as a solution to the semantic heterogeneity problem faced by computer systems. Ontology matching aims at finding correspondences between semantically related entities of different ontologies. These correspondences may stand for equivalence as well as other relations, such as consequence, subsumption, or disjointness, between ontology entities. Many different matching solutions have been proposed so far from various viewpoints, e.g., databases, information systems, artificial intelligence. With Ontology Matching, researchers and practitioners will find a reference book which presents currently available work in a uniform framework. In particular, the work and the techniques presented in this book can equally be applied to database schema matching, catalog integration, XML schema matching and other related problems. The objectives of the book include presenting (i) the state of the art and (ii) the latest research results in ontology matching by providing a detailed account of matching techniques and matching systems in a systematic way from theoretical, practical and application perspectives.
    Date
    20. 6.2012 19:08:22
  2. Philosophy, computing and information science (2014) 0.01
    0.0064346883 = product of:
      0.012869377 = sum of:
        0.012869377 = product of:
          0.025738753 = sum of:
            0.025738753 = weight(_text_:i in 3407) [ClassicSimilarity], result of:
              0.025738753 = score(doc=3407,freq=2.0), product of:
                0.15441231 = queryWeight, product of:
                  3.7717297 = idf(docFreq=2765, maxDocs=44218)
                  0.04093939 = queryNorm
                0.16668847 = fieldWeight in 3407, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.7717297 = idf(docFreq=2765, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3407)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Content
    Introduction: Philosophy's Relevance in Computing and Information Science - Ruth Hagengruber and Uwe V.Riss Part I: Philosophy of Computing and Information 1 The Fourth Revolution in our Self-Understanding - Luciano Floridi -- 2 Information Transfer as a Metaphor - Jakob Krebs -- 3 With Aristotle towards a Differentiated Concept of Information? - Uwe Voigt -- 4 The Influence of Philosophy on the Understanding of Computing and Information - Klaus Fuchs-Kittowski -- Part II: Complexity and System Theory 5 The Emergence of Self-Conscious Systems: From Symbolic AI to Embodied Robotics - Klaus Mainzer -- 6 Artificial Intelligence as a New Metaphysical Project - Aziz F. Zambak Part III: Ontology 7 The Relevance of Philosophical Ontology to Information and Computer Science - Barry Smith -- 8 Ontology, its Origins and its Meaning in Information Science - Jens Kohne -- 9 Smart Questions: Steps towards an Ontology of Questions and Answers - Ludwig Jaskolla and Matthias Rugel Part IV: Knowledge Representation 10 Sophisticated Knowledge Representation and Reasoning Requires Philosophy - Selmer Bringsjord, Micah Clark and Joshua Taylor -- 11 On Frames and Theory-Elements of Structuralism Holger Andreas -- 12 Ontological Complexity and Human Culture David J. Saab and Frederico Fonseca Part V: Action Theory 13 Knowledge and Action between Abstraction and Concretion - Uwe V.Riss -- 14 Action-Directing Construction of Reality in Product Creation Using Social Software: Employing Philosophy to Solve Real-World Problems - Kai Holzweifiig and Jens Krüger -- 15 An Action-Theory-Based Treatment ofTemporal Individuals - Tillmann Pross -- 16 Four Rules for Classifying Social Entities - Ludger Jansen Part VI: Info-Computationalism 17 Info-Computationalism and Philosophical Aspects of Research in Information Sciences - Gordana Dodig-Crnkovic -- 18 Pancomputationalism: Theory or Metaphor ? - Vincent C. Mutter Part VII: Ethics 19 The Importance of the Sources of Professional Obligations - Francis C. Dane