Search (67 results, page 4 of 4)

  • × theme_ss:"Automatisches Indexieren"
  1. Martins, A.L.; Souza, R.R.; Ribeiro de Mello, H.: ¬The use of noun phrases in information retrieval : proposing a mechanism for automatic classification (2014) 0.01
    0.0061772848 = product of:
      0.0123545695 = sum of:
        0.0123545695 = product of:
          0.024709139 = sum of:
            0.024709139 = weight(_text_:22 in 1441) [ClassicSimilarity], result of:
              0.024709139 = score(doc=1441,freq=2.0), product of:
                0.15966053 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045593463 = queryNorm
                0.15476047 = fieldWeight in 1441, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1441)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  2. Mesquita, L.A.P.; Souza, R.R.; Baracho Porto, R.M.A.: Noun phrases in automatic indexing: : a structural analysis of the distribution of relevant terms in doctoral theses (2014) 0.01
    0.0061772848 = product of:
      0.0123545695 = sum of:
        0.0123545695 = product of:
          0.024709139 = sum of:
            0.024709139 = weight(_text_:22 in 1442) [ClassicSimilarity], result of:
              0.024709139 = score(doc=1442,freq=2.0), product of:
                0.15966053 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045593463 = queryNorm
                0.15476047 = fieldWeight in 1442, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1442)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  3. Greiner-Petter, A.; Schubotz, M.; Cohl, H.S.; Gipp, B.: Semantic preserving bijective mappings for expressions involving special functions between computer algebra systems and document preparation systems (2019) 0.01
    0.0061772848 = product of:
      0.0123545695 = sum of:
        0.0123545695 = product of:
          0.024709139 = sum of:
            0.024709139 = weight(_text_:22 in 5499) [ClassicSimilarity], result of:
              0.024709139 = score(doc=5499,freq=2.0), product of:
                0.15966053 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045593463 = queryNorm
                0.15476047 = fieldWeight in 5499, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=5499)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    20. 1.2015 18:30:22
  4. Gaus, W.; Kaluscha, R.: Maschinelle inhaltliche Erschließung von Arztbriefen und Auswertung von Reha-Entlassungsberichten (2006) 0.01
    0.0055199023 = product of:
      0.011039805 = sum of:
        0.011039805 = product of:
          0.02207961 = sum of:
            0.02207961 = weight(_text_:r in 6078) [ClassicSimilarity], result of:
              0.02207961 = score(doc=6078,freq=2.0), product of:
                0.15092614 = queryWeight, product of:
                  3.3102584 = idf(docFreq=4387, maxDocs=44218)
                  0.045593463 = queryNorm
                0.14629413 = fieldWeight in 6078, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.3102584 = idf(docFreq=4387, maxDocs=44218)
                  0.03125 = fieldNorm(doc=6078)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
  5. SIGIR'92 : Proceedings of the 15th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (1992) 0.00
    0.004829915 = product of:
      0.00965983 = sum of:
        0.00965983 = product of:
          0.01931966 = sum of:
            0.01931966 = weight(_text_:r in 6671) [ClassicSimilarity], result of:
              0.01931966 = score(doc=6671,freq=2.0), product of:
                0.15092614 = queryWeight, product of:
                  3.3102584 = idf(docFreq=4387, maxDocs=44218)
                  0.045593463 = queryNorm
                0.12800737 = fieldWeight in 6671, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.3102584 = idf(docFreq=4387, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=6671)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The conference was organized by the Royal School of Librarianship in Copenhagen and was held in cooperation with AICA-GLIR (Italy), BCS-IRSG (UK), DD (Denmark), GI (Germany), INRIA (France). It had support from Apple Computer, Denmark. The volume contains the 32 papers and reports on the two panel sessions, moderated by W.B. Croft, and R. Kovetz, respectively
  6. Needham, R.M.; Sparck Jones, K.: Keywords and clumps (1985) 0.00
    0.004829915 = product of:
      0.00965983 = sum of:
        0.00965983 = product of:
          0.01931966 = sum of:
            0.01931966 = weight(_text_:r in 3645) [ClassicSimilarity], result of:
              0.01931966 = score(doc=3645,freq=2.0), product of:
                0.15092614 = queryWeight, product of:
                  3.3102584 = idf(docFreq=4387, maxDocs=44218)
                  0.045593463 = queryNorm
                0.12800737 = fieldWeight in 3645, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.3102584 = idf(docFreq=4387, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=3645)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The selection that follows was chosen as it represents "a very early paper an the possibilities allowed by computers an documentation." In the early 1960s computers were being used to provide simple automatic indexing systems wherein keywords were extracted from documents. The problem with such systems was that they lacked vocabulary control, thus documents related in subject matter were not always collocated in retrieval. To improve retrieval by improving recall is the raison d'être of vocabulary control tools such as classifications and thesauri. The question arose whether it was possible by automatic means to construct classes of terms, which when substituted, one for another, could be used to improve retrieval performance? One of the first theoretical approaches to this question was initiated by R. M. Needham and Karen Sparck Jones at the Cambridge Language Research Institute in England.t The question was later pursued using experimental methodologies by Sparck Jones, who, as a Senior Research Associate in the Computer Laboratory at the University of Cambridge, has devoted her life's work to research in information retrieval and automatic naturai language processing. Based an the principles of numerical taxonomy, automatic classification techniques start from the premise that two objects are similar to the degree that they share attributes in common. When these two objects are keywords, their similarity is measured in terms of the number of documents they index in common. Step 1 in automatic classification is to compute mathematically the degree to which two terms are similar. Step 2 is to group together those terms that are "most similar" to each other, forming equivalence classes of intersubstitutable terms. The technique for forming such classes varies and is the factor that characteristically distinguishes different approaches to automatic classification. The technique used by Needham and Sparck Jones, that of clumping, is described in the selection that follows. Questions that must be asked are whether the use of automatically generated classes really does improve retrieval performance and whether there is a true eco nomic advantage in substituting mechanical for manual labor. Several years after her work with clumping, Sparck Jones was to observe that while it was not wholly satisfactory in itself, it was valuable in that it stimulated research into automatic classification. To this it might be added that it was valuable in that it introduced to libraryl information science the methods of numerical taxonomy, thus stimulating us to think again about the fundamental nature and purpose of classification. In this connection it might be useful to review how automatically derived classes differ from those of manually constructed classifications: 1) the manner of their derivation is purely a posteriori, the ultimate operationalization of the principle of literary warrant; 2) the relationship between members forming such classes is essentially statistical; the members of a given class are similar to each other not because they possess the class-defining characteristic but by virtue of sharing a family resemblance; and finally, 3) automatically derived classes are not related meaningfully one to another, that is, they are not ordered in traditional hierarchical and precedence relationships.
  7. Markoff, J.: Researchers announce advance in image-recognition software (2014) 0.00
    0.003449939 = product of:
      0.006899878 = sum of:
        0.006899878 = product of:
          0.013799756 = sum of:
            0.013799756 = weight(_text_:r in 1875) [ClassicSimilarity], result of:
              0.013799756 = score(doc=1875,freq=2.0), product of:
                0.15092614 = queryWeight, product of:
                  3.3102584 = idf(docFreq=4387, maxDocs=44218)
                  0.045593463 = queryNorm
                0.09143383 = fieldWeight in 1875, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.3102584 = idf(docFreq=4387, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=1875)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Content
    Computer vision specialists said that despite the improvements, these software systems had made only limited progress toward the goal of digitally duplicating human vision and, even more elusive, understanding. "I don't know that I would say this is 'understanding' in the sense we want," said John R. Smith, a senior manager at I.B.M.'s T.J. Watson Research Center in Yorktown Heights, N.Y. "I think even the ability to generate language here is very limited." But the Google and Stanford teams said that they expect to see significant increases in accuracy as they improve their software and train these programs with larger sets of annotated images. A research group led by Tamara L. Berg, a computer scientist at the University of North Carolina at Chapel Hill, is training a neural network with one million images annotated by humans. "You're trying to tell the story behind the image," she said. "A natural scene will be very complex, and you want to pick out the most important objects in the image.""

Years

Languages

  • e 33
  • d 31
  • f 1
  • m 1
  • ru 1
  • More… Less…

Types

  • a 55
  • el 4
  • x 4
  • s 3
  • m 2
  • r 2
  • d 1
  • More… Less…

Classifications