Search (1 results, page 1 of 1)

  • × author_ss:"Baumgartner, S.E."
  • × author_ss:"Leydesdorff, L."
  1. Baumgartner, S.E.; Leydesdorff, L.: Group-based trajectory modeling (GBTM) of citations in scholarly literature : dynamic qualities of "transient" and "sticky knowledge claims" (2014) 0.00
    0.0020770747 = product of:
      0.0041541494 = sum of:
        0.0041541494 = product of:
          0.008308299 = sum of:
            0.008308299 = weight(_text_:a in 1241) [ClassicSimilarity], result of:
              0.008308299 = score(doc=1241,freq=18.0), product of:
                0.043477926 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.037706986 = queryNorm
                0.19109234 = fieldWeight in 1241, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1241)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Group-based trajectory modeling (GBTM) is applied to the citation curves of articles in six journals and to all citable items in a single field of science (virology, 24 journals) to distinguish among the developmental trajectories in subpopulations. Can citation patterns of highly-cited papers be distinguished in an early phase as "fast-breaking" papers? Can "late bloomers" or "sleeping beauties" be identified? Most interesting, we find differences between "sticky knowledge claims" that continue to be cited more than 10 years after publication and "transient knowledge claims" that show a decay pattern after reaching a peak within a few years. Only papers following the trajectory of a "sticky knowledge claim" can be expected to have a sustained impact. These findings raise questions about indicators of "excellence" that use aggregated citation rates after 2 or 3 years (e.g., impact factors). Because aggregated citation curves can also be composites of the two patterns, fifth-order polynomials (with four bending points) are needed to capture citation curves precisely. For the journals under study, the most frequently cited groups were furthermore much smaller than 10%. Although GBTM has proved a useful method for investigating differences among citation trajectories, the methodology does not allow us to define a percentage of highly cited papers inductively across different fields and journals. Using multinomial logistic regression, we conclude that predictor variables such as journal names, number of authors, etc., do not affect the stickiness of knowledge claims in terms of citations but only the levels of aggregated citations (which are field-specific).
    Type
    a