Search (2 results, page 1 of 1)

  • × theme_ss:"Sprachretrieval"
  • × theme_ss:"Retrievalalgorithmen"
  1. Radev, D.; Fan, W.; Qu, H.; Wu, H.; Grewal, A.: Probabilistic question answering on the Web (2005) 0.00
    0.002035109 = product of:
      0.004070218 = sum of:
        0.004070218 = product of:
          0.008140436 = sum of:
            0.008140436 = weight(_text_:a in 3455) [ClassicSimilarity], result of:
              0.008140436 = score(doc=3455,freq=12.0), product of:
                0.043477926 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.037706986 = queryNorm
                0.18723148 = fieldWeight in 3455, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3455)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Web-based search engines such as Google and NorthernLight return documents that are relevant to a user query, not answers to user questions. We have developed an architecture that augments existing search engines so that they support natural language question answering. The process entails five steps: query modulation, document retrieval, passage extraction, phrase extraction, and answer ranking. In this article, we describe some probabilistic approaches to the last three of these stages. We show how our techniques apply to a number of existing search engines, and we also present results contrasting three different methods for question answering. Our algorithm, probabilistic phrase reranking (PPR), uses proximity and question type features and achieves a total reciprocal document rank of .20 an the TREC8 corpus. Our techniques have been implemented as a Web-accessible system, called NSIR.
    Type
    a
  2. Lin, J.; Katz, B.: Building a reusable test collection for question answering (2006) 0.00
    0.0018577921 = product of:
      0.0037155843 = sum of:
        0.0037155843 = product of:
          0.0074311686 = sum of:
            0.0074311686 = weight(_text_:a in 5045) [ClassicSimilarity], result of:
              0.0074311686 = score(doc=5045,freq=10.0), product of:
                0.043477926 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.037706986 = queryNorm
                0.1709182 = fieldWeight in 5045, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5045)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In contrast to traditional information retrieval systems, which return ranked lists of documents that users must manually browse through, a question answering system attempts to directly answer natural language questions posed by the user. Although such systems possess language-processing capabilities, they still rely on traditional document retrieval techniques to generate an initial candidate set of documents. In this article, the authors argue that document retrieval for question answering represents a task different from retrieving documents in response to more general retrospective information needs. Thus, to guide future system development, specialized question answering test collections must be constructed. They show that the current evaluation resources have major shortcomings; to remedy the situation, they have manually created a small, reusable question answering test collection for research purposes. In this article they describe their methodology for building this test collection and discuss issues they encountered regarding the notion of "answer correctness."
    Type
    a

Authors