Search (29 results, page 1 of 2)

  • × theme_ss:"Wissensrepräsentation"
  • × theme_ss:"Semantische Interoperabilität"
  1. Bittner, T.; Donnelly, M.; Winter, S.: Ontology and semantic interoperability (2006) 0.02
    0.016987987 = product of:
      0.033975974 = sum of:
        0.033975974 = sum of:
          0.0033233196 = weight(_text_:a in 4820) [ClassicSimilarity], result of:
            0.0033233196 = score(doc=4820,freq=2.0), product of:
              0.043477926 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.037706986 = queryNorm
              0.07643694 = fieldWeight in 4820, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046875 = fieldNorm(doc=4820)
          0.030652655 = weight(_text_:22 in 4820) [ClassicSimilarity], result of:
            0.030652655 = score(doc=4820,freq=2.0), product of:
              0.13204344 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.037706986 = queryNorm
              0.23214069 = fieldWeight in 4820, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=4820)
      0.5 = coord(1/2)
    
    Date
    3.12.2016 18:39:22
    Type
    a
  2. Dobrev, P.; Kalaydjiev, O.; Angelova, G.: From conceptual structures to semantic interoperability of content (2007) 0.02
    0.01586826 = product of:
      0.03173652 = sum of:
        0.03173652 = sum of:
          0.0061926404 = weight(_text_:a in 4607) [ClassicSimilarity], result of:
            0.0061926404 = score(doc=4607,freq=10.0), product of:
              0.043477926 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.037706986 = queryNorm
              0.14243183 = fieldWeight in 4607, product of:
                3.1622777 = tf(freq=10.0), with freq of:
                  10.0 = termFreq=10.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.0390625 = fieldNorm(doc=4607)
          0.02554388 = weight(_text_:22 in 4607) [ClassicSimilarity], result of:
            0.02554388 = score(doc=4607,freq=2.0), product of:
              0.13204344 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.037706986 = queryNorm
              0.19345059 = fieldWeight in 4607, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=4607)
      0.5 = coord(1/2)
    
    Abstract
    Smart applications behave intelligently because they understand at least partially the context where they operate. To do this, they need not only a formal domain model but also formal descriptions of the data they process and their own operational behaviour. Interoperability of smart applications is based on formalised definitions of all their data and processes. This paper studies the semantic interoperability of data in the case of eLearning and describes an experiment and its assessment. New content is imported into a knowledge-based learning environment without real updates of the original domain model, which is encoded as a knowledge base of conceptual graphs. A component called mediator enables the import by assigning dummy metadata annotations for the imported items. However, some functionality of the original system is lost, when processing the imported content, due to the lack of proper metadata annotation which cannot be associated fully automatically. So the paper presents an interoperability scenario when appropriate content items are viewed from the perspective of the original world and can be (partially) reused there.
    Source
    Conceptual structures: knowledge architectures for smart applications: 15th International Conference on Conceptual Structures, ICCS 2007, Sheffield, UK, July 22 - 27, 2007 ; proceedings. Eds.: U. Priss u.a
    Type
    a
  3. Peponakis, M.; Mastora, A.; Kapidakis, S.; Doerr, M.: Expressiveness and machine processability of Knowledge Organization Systems (KOS) : an analysis of concepts and relations (2020) 0.00
    0.0023983994 = product of:
      0.004796799 = sum of:
        0.004796799 = product of:
          0.009593598 = sum of:
            0.009593598 = weight(_text_:a in 5787) [ClassicSimilarity], result of:
              0.009593598 = score(doc=5787,freq=24.0), product of:
                0.043477926 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.037706986 = queryNorm
                0.22065444 = fieldWeight in 5787, product of:
                  4.8989797 = tf(freq=24.0), with freq of:
                    24.0 = termFreq=24.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5787)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This study considers the expressiveness (that is the expressive power or expressivity) of different types of Knowledge Organization Systems (KOS) and discusses its potential to be machine-processable in the context of the Semantic Web. For this purpose, the theoretical foundations of KOS are reviewed based on conceptualizations introduced by the Functional Requirements for Subject Authority Data (FRSAD) and the Simple Knowledge Organization System (SKOS); natural language processing techniques are also implemented. Applying a comparative analysis, the dataset comprises a thesaurus (Eurovoc), a subject headings system (LCSH) and a classification scheme (DDC). These are compared with an ontology (CIDOC-CRM) by focusing on how they define and handle concepts and relations. It was observed that LCSH and DDC focus on the formalism of character strings (nomens) rather than on the modelling of semantics; their definition of what constitutes a concept is quite fuzzy, and they comprise a large number of complex concepts. By contrast, thesauri have a coherent definition of what constitutes a concept, and apply a systematic approach to the modelling of relations. Ontologies explicitly define diverse types of relations, and are by their nature machine-processable. The paper concludes that the potential of both the expressiveness and machine processability of each KOS is extensively regulated by its structural rules. It is harder to represent subject headings and classification schemes as semantic networks with nodes and arcs, while thesauri are more suitable for such a representation. In addition, a paradigm shift is revealed which focuses on the modelling of relations between concepts, rather than the concepts themselves.
  4. Khiat, A.; Benaissa, M.: Approach for instance-based ontology alignment : using argument and event structures of generative lexicon (2014) 0.00
    0.0023499418 = product of:
      0.0046998835 = sum of:
        0.0046998835 = product of:
          0.009399767 = sum of:
            0.009399767 = weight(_text_:a in 1577) [ClassicSimilarity], result of:
              0.009399767 = score(doc=1577,freq=16.0), product of:
                0.043477926 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.037706986 = queryNorm
                0.2161963 = fieldWeight in 1577, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1577)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Ontology alignment became a very important problem to ensure semantic interoperability for different sources of information heterogeneous and distributed. Instance-based ontology alignment represents a very promising technique to find semantic correspondences between entities of different ontologies when they contain a lot of instances. In this paper, we describe a new approach to manage ontologies that do not share common instances.This approach extracts the argument and event structures from a set of instances of the concept of the source ontology and compared them with other semantic features extracted from a set of instances of the concept of the target ontology using Generative Lexicon Theory. We show that it is theoretically powerful because it is based on linguistic semantics and useful in practice. We present the experimental results obtained by running our approach on Biblio test of Benchmark series of OAEI 2011. The results show the good performance of our approach.
    Type
    a
  5. Soergel, D.: Towards a relation ontology for the Semantic Web (2011) 0.00
    0.002035109 = product of:
      0.004070218 = sum of:
        0.004070218 = product of:
          0.008140436 = sum of:
            0.008140436 = weight(_text_:a in 4342) [ClassicSimilarity], result of:
              0.008140436 = score(doc=4342,freq=12.0), product of:
                0.043477926 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.037706986 = queryNorm
                0.18723148 = fieldWeight in 4342, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4342)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The Semantic Web consists of data structured for use by computer programs, such as data sets made available under the Linked Open Data initiative. Much of this data is structured following the entity-relationship model encoded in RDF for syntactic interoperability. For semantic interoperability, the semantics of the relationships used in any given dataset needs to be made explicit. Ultimately this requires an inventory of these relationships structured around a relation ontology. This talk will outline a blueprint for such an inventory, including a format for the description/definition of binary and n-ary relations, drawing on ideas put forth in the classification and thesaurus community over the last 60 years, upper level ontologies, systems like FrameNet, the Buffalo Relation Ontology, and an analysis of linked data sets.
    Source
    Classification and ontology: formal approaches and access to knowledge: proceedings of the International UDC Seminar, 19-20 September 2011, The Hague, The Netherlands. Eds.: A. Slavic u. E. Civallero
    Type
    a
  6. Weller, K.: Kooperativer Ontologieaufbau (2006) 0.00
    0.001938603 = product of:
      0.003877206 = sum of:
        0.003877206 = product of:
          0.007754412 = sum of:
            0.007754412 = weight(_text_:a in 1270) [ClassicSimilarity], result of:
              0.007754412 = score(doc=1270,freq=2.0), product of:
                0.043477926 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.037706986 = queryNorm
                0.17835285 = fieldWeight in 1270, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.109375 = fieldNorm(doc=1270)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  7. Weller, K.: Kooperativer Ontologieaufbau (2006) 0.00
    0.001938603 = product of:
      0.003877206 = sum of:
        0.003877206 = product of:
          0.007754412 = sum of:
            0.007754412 = weight(_text_:a in 2397) [ClassicSimilarity], result of:
              0.007754412 = score(doc=2397,freq=2.0), product of:
                0.043477926 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.037706986 = queryNorm
                0.17835285 = fieldWeight in 2397, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.109375 = fieldNorm(doc=2397)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  8. Hoekstra, R.: BestMap: context-aware SKOS vocabulary mappings in OWL 2 (2009) 0.00
    0.001938603 = product of:
      0.003877206 = sum of:
        0.003877206 = product of:
          0.007754412 = sum of:
            0.007754412 = weight(_text_:a in 1574) [ClassicSimilarity], result of:
              0.007754412 = score(doc=1574,freq=8.0), product of:
                0.043477926 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.037706986 = queryNorm
                0.17835285 = fieldWeight in 1574, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1574)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This paper describes an approach to SKOS vocabulary mapping that takes into account the context in which vocabulary terms are used in annotations. The standard vocabulary mapping properties in SKOS only allow for binary mappings between concepts. In the BestMap ontology, annotated resources are the contexts in which annotations coincide and allow for a more fine grained control over when mappings hold. A mapping between two vocabularies is defined as a class that groups descriptions of a resource. We use the OWL 2 features for property chains, disjoint properties, union, intersection and negation together with careful use of equivalence and subsumption to specify these mappings.
  9. Boteram, F.; Gödert, W.; Hubrich, J.: Semantic interoperability and retrieval paradigms (2010) 0.00
    0.0019187195 = product of:
      0.003837439 = sum of:
        0.003837439 = product of:
          0.007674878 = sum of:
            0.007674878 = weight(_text_:a in 3362) [ClassicSimilarity], result of:
              0.007674878 = score(doc=3362,freq=6.0), product of:
                0.043477926 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.037706986 = queryNorm
                0.17652355 = fieldWeight in 3362, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3362)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This paper presents a new approach to understanding how indexing strategies, models for interoperability and retrieval paradigms interact in information systems and how this can be used to support the design and implementation of components of a semantic navigation for information retrieval systems.
    Type
    a
  10. Hollink, L.; Assem, M. van; Wang, S.; Isaac, A.; Schreiber, G.: Two variations on ontology alignment evaluation : methodological issues (2008) 0.00
    0.0018577921 = product of:
      0.0037155843 = sum of:
        0.0037155843 = product of:
          0.0074311686 = sum of:
            0.0074311686 = weight(_text_:a in 4645) [ClassicSimilarity], result of:
              0.0074311686 = score(doc=4645,freq=10.0), product of:
                0.043477926 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.037706986 = queryNorm
                0.1709182 = fieldWeight in 4645, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4645)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Evaluation of ontology alignments is in practice done in two ways: (1) assessing individual correspondences and (2) comparing the alignment to a reference alignment. However, this type of evaluation does not guarantee that an application which uses the alignment will perform well. In this paper, we contribute to the current ontology alignment evaluation practices by proposing two alternative evaluation methods that take into account some characteristics of a usage scenario without doing a full-fledged end-to-end evaluation. We compare different evaluation approaches in three case studies, focussing on methodological issues. Each case study considers an alignment between a different pair of ontologies, ranging from rich and well-structured to small and poorly structured. This enables us to conclude on the use of different evaluation approaches in different settings.
  11. Vlachidis, A.; Tudhope, D.: ¬A knowledge-based approach to information extraction for semantic interoperability in the archaeology domain (2016) 0.00
    0.0016959244 = product of:
      0.0033918489 = sum of:
        0.0033918489 = product of:
          0.0067836978 = sum of:
            0.0067836978 = weight(_text_:a in 2895) [ClassicSimilarity], result of:
              0.0067836978 = score(doc=2895,freq=12.0), product of:
                0.043477926 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.037706986 = queryNorm
                0.15602624 = fieldWeight in 2895, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2895)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The article presents a method for automatic semantic indexing of archaeological grey-literature reports using empirical (rule-based) Information Extraction techniques in combination with domain-specific knowledge organization systems. The semantic annotation system (OPTIMA) performs the tasks of Named Entity Recognition, Relation Extraction, Negation Detection, and Word-Sense Disambiguation using hand-crafted rules and terminological resources for associating contextual abstractions with classes of the standard ontology CIDOC Conceptual Reference Model (CRM) for cultural heritage and its archaeological extension, CRM-EH. Relation Extraction (RE) performance benefits from a syntactic-based definition of RE patterns derived from domain oriented corpus analysis. The evaluation also shows clear benefit in the use of assistive natural language processing (NLP) modules relating to Word-Sense Disambiguation, Negation Detection, and Noun Phrase Validation, together with controlled thesaurus expansion. The semantic indexing results demonstrate the capacity of rule-based Information Extraction techniques to deliver interoperable semantic abstractions (semantic annotations) with respect to the CIDOC CRM and archaeological thesauri. Major contributions include recognition of relevant entities using shallow parsing NLP techniques driven by a complimentary use of ontological and terminological domain resources and empirical derivation of context-driven RE rules for the recognition of semantic relationships from phrases of unstructured text.
    Type
    a
  12. Bean, C.A.: Hierarchical relationships used in mapping between knowledge structures (2006) 0.00
    0.0016788795 = product of:
      0.003357759 = sum of:
        0.003357759 = product of:
          0.006715518 = sum of:
            0.006715518 = weight(_text_:a in 5866) [ClassicSimilarity], result of:
              0.006715518 = score(doc=5866,freq=6.0), product of:
                0.043477926 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.037706986 = queryNorm
                0.1544581 = fieldWeight in 5866, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5866)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    User-designated Broader-Narrower Term pairs were analyzed to better characterize the nature and structure of the relationships between the pair members, previously determined by experts to be hierarchical in nature. Semantic analysis revealed that almost three-quarters (72%) of the term pairs were characterized as is-a (-kind-of) relationships and the rest (28%) as part-whole relationships. Four basic patterns of syntactic specification were observed. Implications of the findings for mapping strategies are discussed.
    Source
    Knowledge organization for a global learning society: Proceedings of the 9th International ISKO Conference, 4-7 July 2006, Vienna, Austria. Hrsg.: G. Budin, C. Swertz u. K. Mitgutsch
    Type
    a
  13. Panzer, M.; Zeng, M.L.: Modeling classification systems in SKOS : Some challenges and best-practice (2009) 0.00
    0.0016788795 = product of:
      0.003357759 = sum of:
        0.003357759 = product of:
          0.006715518 = sum of:
            0.006715518 = weight(_text_:a in 3717) [ClassicSimilarity], result of:
              0.006715518 = score(doc=3717,freq=6.0), product of:
                0.043477926 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.037706986 = queryNorm
                0.1544581 = fieldWeight in 3717, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3717)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Representing classification systems on the web for publication and exchange continues to be a challenge within the SKOS framework. This paper focuses on the differences between classification schemes and other families of KOS (knowledge organization systems) that make it difficult to express classifications without sacrificing a large amount of their semantic richness. Issues resulting from the specific set of relationships between classes and topics that defines the basic nature of any classification system are discussed. Where possible, different solutions within the frameworks of SKOS and OWL are proposed and examined.
    Type
    a
  14. Bandholtz, T.; Schulte-Coerne, T.; Glaser, R.; Fock, J.; Keller, T.: iQvoc - open source SKOS(XL) maintenance and publishing tool (2010) 0.00
    0.0016788795 = product of:
      0.003357759 = sum of:
        0.003357759 = product of:
          0.006715518 = sum of:
            0.006715518 = weight(_text_:a in 604) [ClassicSimilarity], result of:
              0.006715518 = score(doc=604,freq=6.0), product of:
                0.043477926 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.037706986 = queryNorm
                0.1544581 = fieldWeight in 604, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=604)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    iQvoc is a new open source SKOS-XL vocabulary management tool developed by the Federal Environment Agency, Germany, and innoQ Deutschland GmbH. Its immediate purpose is maintaining and publishing reference vocabularies in the upcoming Linked Data cloud of environmental information, but it may be easily adapted to host any SKOS- XL compliant vocabulary. iQvoc is implemented as a Ruby on Rails application running on top of JRuby - the Java implementation of the Ruby Programming Language. To increase the user experience when editing content, iQvoc uses heavily the JavaScript library jQuery.
    Type
    a
  15. Widhalm, R.; Mueck, T.A.: Merging topics in well-formed XML topic maps (2003) 0.00
    0.0016616598 = product of:
      0.0033233196 = sum of:
        0.0033233196 = product of:
          0.006646639 = sum of:
            0.006646639 = weight(_text_:a in 2186) [ClassicSimilarity], result of:
              0.006646639 = score(doc=2186,freq=8.0), product of:
                0.043477926 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.037706986 = queryNorm
                0.15287387 = fieldWeight in 2186, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2186)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Topic Maps are a standardized modelling approach for the semantic annotation and description of WWW resources. They enable an improved search and navigational access on information objects stored in semi-structured information spaces like the WWW. However, the according standards ISO 13250 and XTM (XML Topic Maps) lack formal semantics, several questions concerning e.g. subclassing, inheritance or merging of topics are left open. The proposed TMUML meta model, directly derived from the well known UML meta model, is a meta model for Topic Maps which enables semantic constraints to be formulated in OCL (object constraint language) in order to answer such open questions and overcome possible inconsistencies in Topic Map repositories. We will examine the XTM merging conditions and show, in several examples, how the TMUML meta model enables semantic constraints for Topic Map merging to be formulated in OCL. Finally, we will show how the TM validation process, i.e., checking if a Topic Map is well formed, includes our merging conditions.
    Type
    a
  16. Koutsomitropoulos, D.A.; Solomou, G.D.; Alexopoulos, A.D.; Papatheodorou, T.S.: Semantic metadata interoperability and inference-based querying in digital repositories (2009) 0.00
    0.0016616598 = product of:
      0.0033233196 = sum of:
        0.0033233196 = product of:
          0.006646639 = sum of:
            0.006646639 = weight(_text_:a in 3731) [ClassicSimilarity], result of:
              0.006646639 = score(doc=3731,freq=8.0), product of:
                0.043477926 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.037706986 = queryNorm
                0.15287387 = fieldWeight in 3731, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3731)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Metadata applications have evolved in time into highly structured "islands of information" about digital resources, often bearing a strong semantic interpretation. Scarcely however are these semantics being communicated in machine readable and understandable ways. At the same time, the process for transforming the implied metadata knowledge into explicit Semantic Web descriptions can be problematic and is not always evident. In this article we take upon the well-established Dublin Core metadata standard as well as other metadata schemata, which often appear in digital repositories set-ups, and suggest a proper Semantic Web OWL ontology. In this process the authors cope with discrepancies and incompatibilities, indicative of such attempts, in novel ways. Moreover, we show the potential and necessity of this approach by demonstrating inferences on the resulting ontology, instantiated with actual metadata records. The authors conclude by presenting a working prototype that provides for inference-based querying on top of digital repositories.
    Type
    a
  17. Rocha Souza, R.; Lemos, D.: a comparative analysis : Knowledge organization systems for the representation of multimedia resources on the Web (2020) 0.00
    0.0016616598 = product of:
      0.0033233196 = sum of:
        0.0033233196 = product of:
          0.006646639 = sum of:
            0.006646639 = weight(_text_:a in 5993) [ClassicSimilarity], result of:
              0.006646639 = score(doc=5993,freq=8.0), product of:
                0.043477926 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.037706986 = queryNorm
                0.15287387 = fieldWeight in 5993, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5993)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The lack of standardization in the production, organization and dissemination of information in documentation centers and institutions alike, as a result from the digitization of collections and their availability on the internet has called for integration efforts. The sheer availability of multimedia content has fostered the development of many distinct and, most of the time, independent metadata standards for its description. This study aims at presenting and comparing the existing standards of metadata, vocabularies and ontologies for multimedia annotation and also tries to offer a synthetic overview of its main strengths and weaknesses, aiding efforts for semantic integration and enhancing the findability of available multimedia resources on the web. We also aim at unveiling the characteristics that could, should and are perhaps not being highlighted in the characterization of multimedia resources.
    Type
    a
  18. Boteram, F.: "Content architecture" : semantic interoperability in an international comprehensive knowledge organisation system (2010) 0.00
    0.0015666279 = product of:
      0.0031332558 = sum of:
        0.0031332558 = product of:
          0.0062665115 = sum of:
            0.0062665115 = weight(_text_:a in 647) [ClassicSimilarity], result of:
              0.0062665115 = score(doc=647,freq=16.0), product of:
                0.043477926 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.037706986 = queryNorm
                0.14413087 = fieldWeight in 647, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=647)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Purpose - This paper seeks to develop a specified typology of various levels of semantic interoperability, designed to provide semantically expressive and functional means to interconnect typologically different sub-systems in an international comprehensive knowledge organization system, supporting advanced information retrieval and exploration strategies. Design/methodology/approach - Taking the analysis of rudimentary forms of a functional interoperability based on simple pattern matching as a starting-point, more refined strategies to provide semantic interoperability, which is actually reaching the conceptual and even thematic level, are being developed. The paper also examines the potential benefits and perspectives of the selective transfer of modelling strategies from the field of semantic technologies for the refinement of relational structures of inter-system and inter-concept relations as a requirement for expressive and functional indexing languages supporting advanced types of semantic interoperability. Findings - As the principles and strategies of advanced information retrieval systems largely depend on semantic information, new concepts and strategies to achieve semantic interoperability have to be developed. Research limitations/implications - The approach has been developed in the functional and structural context of an international comprehensive system integrating several heterogeneous knowledge organization systems and indexing languages by interconnecting them to a central conceptual structure operating as a spine in an overall system designed to support retrieval and exploration of bibliographic records representing complex conceptual entities. Originality/value - Research and development aimed at providing technical and structural interoperability has to be complemented by a thorough and precise reflection and definition of various degrees and types of interoperability on the semantic level as well. The approach specifies these levels and reflects the implications and their potential for advanced strategies of retrieval and exploration.
    Type
    a
  19. Amarger, F.; Chanet, J.-P.; Haemmerlé, O.; Hernandez, N.; Roussey, C.: SKOS sources transformations for ontology engineering : agronomical taxonomy use case (2014) 0.00
    0.0014390396 = product of:
      0.0028780792 = sum of:
        0.0028780792 = product of:
          0.0057561584 = sum of:
            0.0057561584 = weight(_text_:a in 1593) [ClassicSimilarity], result of:
              0.0057561584 = score(doc=1593,freq=6.0), product of:
                0.043477926 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.037706986 = queryNorm
                0.13239266 = fieldWeight in 1593, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1593)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Sources like thesauri or taxonomies are already used as input in ontology development process. Some of them are also published on the LOD using the SKOS format. Reusing this type of sources to build an ontology is not an easy task. The ontology developer has to face different syntax and different modelling goals. We propose in this paper a new methodology to transform several non-ontological sources into a single ontology. We take into account: the redundancy of the knowledge extracted from sources in order to discover the consensual knowledge and Ontology Design Patterns (ODPs) to guide the transformation process. We have evaluated our methodology by creating an ontology on wheat taxonomy from three sources: Agrovoc thesaurus, TaxRef taxonomy, NCBI taxonomy.
    Type
    a
  20. Krötzsch, M.; Hitzler, P.; Ehrig, M.; Sure, Y.: Category theory in ontology research : concrete gain from an abstract approach (2004 (?)) 0.00
    0.0014390396 = product of:
      0.0028780792 = sum of:
        0.0028780792 = product of:
          0.0057561584 = sum of:
            0.0057561584 = weight(_text_:a in 4538) [ClassicSimilarity], result of:
              0.0057561584 = score(doc=4538,freq=6.0), product of:
                0.043477926 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.037706986 = queryNorm
                0.13239266 = fieldWeight in 4538, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4538)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The focus of research on representing and reasoning with knowledge traditionally has been on single specifications and appropriate inference paradigms to draw conclusions from such data. Accordingly, this is also an essential aspect of ontology research which has received much attention in recent years. But ontologies introduce another new challenge based on the distributed nature of most of their applications, which requires to relate heterogeneous ontological specifications and to integrate information from multiple sources. These problems have of course been recognized, but many current approaches still lack the deep formal backgrounds on which todays reasoning paradigms are already founded. Here we propose category theory as a well-explored and very extensive mathematical foundation for modelling distributed knowledge. A particular prospect is to derive conclusions from the structure of those distributed knowledge bases, as it is for example needed when merging ontologies
    Type
    a