Search (3 results, page 1 of 1)

  • × year_i:[2000 TO 2010}
  • × theme_ss:"Wissensrepräsentation"
  • × theme_ss:"Klassifikationstheorie: Elemente / Struktur"
  1. Wilson, T.: ¬The strict faceted classification model (2006) 0.00
    0.0019582848 = product of:
      0.0039165695 = sum of:
        0.0039165695 = product of:
          0.007833139 = sum of:
            0.007833139 = weight(_text_:a in 2836) [ClassicSimilarity], result of:
              0.007833139 = score(doc=2836,freq=4.0), product of:
                0.043477926 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.037706986 = queryNorm
                0.18016359 = fieldWeight in 2836, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.078125 = fieldNorm(doc=2836)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Faceted classification, at its core, implies orthogonality - that every facet axis exists at right angles to (i.e., independently of) every other facet axis. That's why a faceted classification is sometimes represented with a chart. This set of desserts has been classified by their confection types and, orthogonally, by their flavors.
  2. Giunchiglia, F.; Zaihrayeu, I.; Farazi, F.: Converting classifications into OWL ontologies (2009) 0.00
    0.0014390396 = product of:
      0.0028780792 = sum of:
        0.0028780792 = product of:
          0.0057561584 = sum of:
            0.0057561584 = weight(_text_:a in 4690) [ClassicSimilarity], result of:
              0.0057561584 = score(doc=4690,freq=6.0), product of:
                0.043477926 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.037706986 = queryNorm
                0.13239266 = fieldWeight in 4690, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4690)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Classification schemes, such as the DMoZ web directory, provide a convenient and intuitive way for humans to access classified contents. While being easy to be dealt with for humans, classification schemes remain hard to be reasoned about by automated software agents. Among other things, this hardness is conditioned by the ambiguous na- ture of the natural language used to describe classification categories. In this paper we describe how classification schemes can be converted into OWL ontologies, thus enabling reasoning on them by Semantic Web applications. The proposed solution is based on a two phase approach in which category names are first encoded in a concept language and then, together with the structure of the classification scheme, are converted into an OWL ontology. We demonstrate the practical applicability of our approach by showing how the results of reasoning on these OWL ontologies can help improve the organization and use of web directories.
  3. Bosch, M.: Ontologies, different reasoning strategies, different logics, different kinds of knowledge representation : working together (2006) 0.00
    0.0013707994 = product of:
      0.0027415988 = sum of:
        0.0027415988 = product of:
          0.0054831975 = sum of:
            0.0054831975 = weight(_text_:a in 166) [ClassicSimilarity], result of:
              0.0054831975 = score(doc=166,freq=4.0), product of:
                0.043477926 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.037706986 = queryNorm
                0.12611452 = fieldWeight in 166, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=166)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The recent experiences in the building, maintenance and reuse of ontologies has shown that the most efficient approach is the collaborative one. However, communication between collaborators such as IT professionals, librarians, web designers and subject matter experts is difficult and time consuming. This is because there are different reasoning strategies, different logics and different kinds of knowledge representation in the applications of Semantic Web. This article intends to be a reference scheme. It uses concise and simple explanations that can be used in common by specialists of different backgrounds working together in an application of Semantic Web.
    Type
    a