Search (10 results, page 1 of 1)

  • × type_ss:"m"
  • × theme_ss:"Visualisierung"
  1. Börner, K.: Atlas of knowledge : anyone can map (2015) 0.03
    0.028503895 = product of:
      0.05700779 = sum of:
        0.05700779 = sum of:
          0.0040592253 = weight(_text_:a in 3355) [ClassicSimilarity], result of:
            0.0040592253 = score(doc=3355,freq=2.0), product of:
              0.053105544 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046056706 = queryNorm
              0.07643694 = fieldWeight in 3355, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046875 = fieldNorm(doc=3355)
          0.052948564 = weight(_text_:22 in 3355) [ClassicSimilarity], result of:
            0.052948564 = score(doc=3355,freq=4.0), product of:
              0.16128273 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046056706 = queryNorm
              0.32829654 = fieldWeight in 3355, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=3355)
      0.5 = coord(1/2)
    
    Content
    One of a series of three publications influenced by the travelling exhibit Places & Spaces: Mapping Science, curated by the Cyberinfrastructure for Network Science Center at Indiana University. - Additional materials can be found at http://http://scimaps.org/atlas2. Erweitert durch: Börner, Katy. Atlas of Science: Visualizing What We Know.
    Date
    22. 1.2017 16:54:03
    22. 1.2017 17:10:56
  2. Thissen, F.: Screen-Design-Manual : Communicating Effectively Through Multimedia (2003) 0.02
    0.018529613 = product of:
      0.037059225 = sum of:
        0.037059225 = sum of:
          0.005858987 = weight(_text_:a in 1397) [ClassicSimilarity], result of:
            0.005858987 = score(doc=1397,freq=6.0), product of:
              0.053105544 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046056706 = queryNorm
              0.11032722 = fieldWeight in 1397, product of:
                2.4494898 = tf(freq=6.0), with freq of:
                  6.0 = termFreq=6.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1397)
          0.03120024 = weight(_text_:22 in 1397) [ClassicSimilarity], result of:
            0.03120024 = score(doc=1397,freq=2.0), product of:
              0.16128273 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046056706 = queryNorm
              0.19345059 = fieldWeight in 1397, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1397)
      0.5 = coord(1/2)
    
    Abstract
    The "Screen Design Manual" provides designers of interactive media with a practical working guide for preparing and presenting information that is suitable for both their target groups and the media they are using. It describes background information and relationships, clarifies them with the help of examples, and encourages further development of the language of digital media. In addition to the basics of the psychology of perception and learning, ergonomics, communication theory, imagery research, and aesthetics, the book also explores the design of navigation and orientation elements. Guidelines and checklists, along with the unique presentation of the book, support the application of information in practice.
    Classification
    ST 253 Informatik / Monographien / Software und -entwicklung / Web-Programmierwerkzeuge (A-Z)
    Date
    22. 3.2008 14:29:25
    RVK
    ST 253 Informatik / Monographien / Software und -entwicklung / Web-Programmierwerkzeuge (A-Z)
  3. Trunk, D.: Semantische Netze in Informationssystemen : Verbesserung der Suche durch Interaktion und Visualisierung (2005) 0.01
    0.010920083 = product of:
      0.021840166 = sum of:
        0.021840166 = product of:
          0.043680333 = sum of:
            0.043680333 = weight(_text_:22 in 2500) [ClassicSimilarity], result of:
              0.043680333 = score(doc=2500,freq=2.0), product of:
                0.16128273 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046056706 = queryNorm
                0.2708308 = fieldWeight in 2500, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2500)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    30. 1.2007 18:22:41
  4. Information visualization in data mining and knowledge discovery (2002) 0.01
    0.009689726 = product of:
      0.019379452 = sum of:
        0.019379452 = sum of:
          0.0068993564 = weight(_text_:a in 1789) [ClassicSimilarity], result of:
            0.0068993564 = score(doc=1789,freq=52.0), product of:
              0.053105544 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046056706 = queryNorm
              0.12991782 = fieldWeight in 1789, product of:
                7.2111025 = tf(freq=52.0), with freq of:
                  52.0 = termFreq=52.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.015625 = fieldNorm(doc=1789)
          0.012480095 = weight(_text_:22 in 1789) [ClassicSimilarity], result of:
            0.012480095 = score(doc=1789,freq=2.0), product of:
              0.16128273 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046056706 = queryNorm
              0.07738023 = fieldWeight in 1789, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.015625 = fieldNorm(doc=1789)
      0.5 = coord(1/2)
    
    Date
    23. 3.2008 19:10:22
    Footnote
    Rez. in: JASIST 54(2003) no.9, S.905-906 (C.A. Badurek): "Visual approaches for knowledge discovery in very large databases are a prime research need for information scientists focused an extracting meaningful information from the ever growing stores of data from a variety of domains, including business, the geosciences, and satellite and medical imagery. This work presents a summary of research efforts in the fields of data mining, knowledge discovery, and data visualization with the goal of aiding the integration of research approaches and techniques from these major fields. The editors, leading computer scientists from academia and industry, present a collection of 32 papers from contributors who are incorporating visualization and data mining techniques through academic research as well application development in industry and government agencies. Information Visualization focuses upon techniques to enhance the natural abilities of humans to visually understand data, in particular, large-scale data sets. It is primarily concerned with developing interactive graphical representations to enable users to more intuitively make sense of multidimensional data as part of the data exploration process. It includes research from computer science, psychology, human-computer interaction, statistics, and information science. Knowledge Discovery in Databases (KDD) most often refers to the process of mining databases for previously unknown patterns and trends in data. Data mining refers to the particular computational methods or algorithms used in this process. The data mining research field is most related to computational advances in database theory, artificial intelligence and machine learning. This work compiles research summaries from these main research areas in order to provide "a reference work containing the collection of thoughts and ideas of noted researchers from the fields of data mining and data visualization" (p. 8). It addresses these areas in three main sections: the first an data visualization, the second an KDD and model visualization, and the last an using visualization in the knowledge discovery process. The seven chapters of Part One focus upon methodologies and successful techniques from the field of Data Visualization. Hoffman and Grinstein (Chapter 2) give a particularly good overview of the field of data visualization and its potential application to data mining. An introduction to the terminology of data visualization, relation to perceptual and cognitive science, and discussion of the major visualization display techniques are presented. Discussion and illustration explain the usefulness and proper context of such data visualization techniques as scatter plots, 2D and 3D isosurfaces, glyphs, parallel coordinates, and radial coordinate visualizations. Remaining chapters present the need for standardization of visualization methods, discussion of user requirements in the development of tools, and examples of using information visualization in addressing research problems.
    In 13 chapters, Part Two provides an introduction to KDD, an overview of data mining techniques, and examples of the usefulness of data model visualizations. The importance of visualization throughout the KDD process is stressed in many of the chapters. In particular, the need for measures of visualization effectiveness, benchmarking for identifying best practices, and the use of standardized sample data sets is convincingly presented. Many of the important data mining approaches are discussed in this complementary context. Cluster and outlier detection, classification techniques, and rule discovery algorithms are presented as the basic techniques common to the KDD process. The potential effectiveness of using visualization in the data modeling process are illustrated in chapters focused an using visualization for helping users understand the KDD process, ask questions and form hypotheses about their data, and evaluate the accuracy and veracity of their results. The 11 chapters of Part Three provide an overview of the KDD process and successful approaches to integrating KDD, data mining, and visualization in complementary domains. Rhodes (Chapter 21) begins this section with an excellent overview of the relation between the KDD process and data mining techniques. He states that the "primary goals of data mining are to describe the existing data and to predict the behavior or characteristics of future data of the same type" (p. 281). These goals are met by data mining tasks such as classification, regression, clustering, summarization, dependency modeling, and change or deviation detection. Subsequent chapters demonstrate how visualization can aid users in the interactive process of knowledge discovery by graphically representing the results from these iterative tasks. Finally, examples of the usefulness of integrating visualization and data mining tools in the domain of business, imagery and text mining, and massive data sets are provided. This text concludes with a thorough and useful 17-page index and lengthy yet integrating 17-page summary of the academic and industrial backgrounds of the contributing authors. A 16-page set of color inserts provide a better representation of the visualizations discussed, and a URL provided suggests that readers may view all the book's figures in color on-line, although as of this submission date it only provides access to a summary of the book and its contents. The overall contribution of this work is its focus an bridging two distinct areas of research, making it a valuable addition to the Morgan Kaufmann Series in Database Management Systems. The editors of this text have met their main goal of providing the first textbook integrating knowledge discovery, data mining, and visualization. Although it contributes greatly to our under- standing of the development and current state of the field, a major weakness of this text is that there is no concluding chapter to discuss the contributions of the sum of these contributed papers or give direction to possible future areas of research. "Integration of expertise between two different disciplines is a difficult process of communication and reeducation. Integrating data mining and visualization is particularly complex because each of these fields in itself must draw an a wide range of research experience" (p. 300). Although this work contributes to the crossdisciplinary communication needed to advance visualization in KDD, a more formal call for an interdisciplinary research agenda in a concluding chapter would have provided a more satisfying conclusion to a very good introductory text.
    With contributors almost exclusively from the computer science field, the intended audience of this work is heavily slanted towards a computer science perspective. However, it is highly readable and provides introductory material that would be useful to information scientists from a variety of domains. Yet, much interesting work in information visualization from other fields could have been included giving the work more of an interdisciplinary perspective to complement their goals of integrating work in this area. Unfortunately, many of the application chapters are these, shallow, and lack complementary illustrations of visualization techniques or user interfaces used. However, they do provide insight into the many applications being developed in this rapidly expanding field. The authors have successfully put together a highly useful reference text for the data mining and information visualization communities. Those interested in a good introduction and overview of complementary research areas in these fields will be satisfied with this collection of papers. The focus upon integrating data visualization with data mining complements texts in each of these fields, such as Advances in Knowledge Discovery and Data Mining (Fayyad et al., MIT Press) and Readings in Information Visualization: Using Vision to Think (Card et. al., Morgan Kauffman). This unique work is a good starting point for future interaction between researchers in the fields of data visualization and data mining and makes a good accompaniment for a course focused an integrating these areas or to the main reference texts in these fields."
  5. Thissen, F.: Screen-Design-Handbuch : Effektiv informieren und kommunizieren mit Multimedia (2001) 0.01
    0.009360071 = product of:
      0.018720143 = sum of:
        0.018720143 = product of:
          0.037440285 = sum of:
            0.037440285 = weight(_text_:22 in 1781) [ClassicSimilarity], result of:
              0.037440285 = score(doc=1781,freq=2.0), product of:
                0.16128273 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046056706 = queryNorm
                0.23214069 = fieldWeight in 1781, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1781)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 3.2008 14:35:21
  6. Tufte, E.R.: Envisioning information (1990) 0.00
    0.0020296127 = product of:
      0.0040592253 = sum of:
        0.0040592253 = product of:
          0.008118451 = sum of:
            0.008118451 = weight(_text_:a in 3733) [ClassicSimilarity], result of:
              0.008118451 = score(doc=3733,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15287387 = fieldWeight in 3733, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3733)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Classification
    Geo A 287 / Graphische Darstellung
    Pub A 91 / Information
    SBB
    Geo A 287 / Graphische Darstellung
    Pub A 91 / Information
  7. Burnett, R.: How images think (2004) 0.00
    0.0017248391 = product of:
      0.0034496782 = sum of:
        0.0034496782 = product of:
          0.0068993564 = sum of:
            0.0068993564 = weight(_text_:a in 3884) [ClassicSimilarity], result of:
              0.0068993564 = score(doc=3884,freq=52.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.12991782 = fieldWeight in 3884, product of:
                  7.2111025 = tf(freq=52.0), with freq of:
                    52.0 = termFreq=52.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.015625 = fieldNorm(doc=3884)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Footnote
    Rez. in: JASIST 56(2005) no.10, S.1126-1128 (P.K. Nayar): "How Images Think is an exercise both in philosophical meditation and critical theorizing about media, images, affects, and cognition. Burnett combines the insights of neuroscience with theories of cognition and the computer sciences. He argues that contemporary metaphors - biological or mechanical - about either cognition, images, or computer intelligence severely limit our understanding of the image. He suggests in his introduction that "image" refers to the "complex set of interactions that constitute everyday life in image-worlds" (p. xviii). For Burnett the fact that increasing amounts of intelligence are being programmed into technologies and devices that use images as their main form of interaction and communication-computers, for instance-suggests that images are interfaces, structuring interaction, people, and the environment they share. New technologies are not simply extensions of human abilities and needs-they literally enlarge cultural and social preconceptions of the relationship between body and mind. The flow of information today is part of a continuum, with exceptional events standing as punctuation marks. This flow connects a variety of sources, some of which are continuous - available 24 hours - or "live" and radically alters issues of memory and history. Television and the Internet, notes Burnett, are not simply a simulated world-they are the world, and the distinctions between "natural" and "non-natural" have disappeared. Increasingly, we immerse ourselves in the image, as if we are there. We rarely become conscious of the fact that we are watching images of events-for all perceptioe, cognitive, and interpretive purposes, the image is the event for us. The proximity and distance of viewer from/with the viewed has altered so significantly that the screen is us. However, this is not to suggest that we are simply passive consumers of images. As Burnett points out, painstakingly, issues of creativity are involved in the process of visualization-viewwes generate what they see in the images. This involves the historical moment of viewing-such as viewing images of the WTC bombings-and the act of re-imagining. As Burnett puts it, "the questions about what is pictured and what is real have to do with vantage points [of the viewer] and not necessarily what is in the image" (p. 26). In his second chapter Burnett moves an to a discussion of "imagescapes." Analyzing the analogue-digital programming of images, Burnett uses the concept of "reverie" to describe the viewing experience. The reverie is a "giving in" to the viewing experience, a "state" in which conscious ("I am sitting down an this sofa to watch TV") and unconscious (pleasure, pain, anxiety) processes interact. Meaning emerges in the not-always easy or "clean" process of hybridization. This "enhances" the thinking process beyond the boundaries of either image or subject. Hybridization is the space of intelligence, exchange, and communication.
    Moving an to virtual images, Burnett posits the existence of "microcultures": places where people take control of the means of creation and production in order to makes sense of their social and cultural experiences. Driven by the need for community, such microcultures generate specific images as part of a cultural movement (Burnett in fact argues that microcultures make it possible for a "small cinema of twenty-five seats to become part of a cultural movement" [p. 63]), where the process of visualization-which involves an awareness of the historical moment - is central to the info-world and imagescapes presented. The computer becomms an archive, a history. The challenge is not only of preserving information, but also of extracting information. Visualization increasingly involves this process of picking a "vantage point" in order to selectively assimilate the information. In virtual reality systems, and in the digital age in general, the distance between what is being pictured and what is experienced is overcome. Images used to be treated as opaque or transparent films among experience, perception, and thought. But, now, images are taken to another level, where the viewer is immersed in the image-experience. Burnett argues-though this is hardly a fresh insight-that "interactivity is only possible when images are the raw material used by participants to change if not transform the purpose of their viewing experience" (p. 90). He suggests that a work of art, "does not start its life as an image ... it gains the status of image when it is placed into a context of viewing and visualization" (p. 90). With simulations and cyberspace the viewing experience has been changed utterly. Burnett defines simulation as "mapping different realities into images that have an environmental, cultural, and social form" (p. 95). However, the emphasis in Burnett is significant-he suggests that interactivity is not achieved through effects, but as a result of experiences attached to stories. Narrative is not merely the effect of technology-it is as much about awareness as it is about Fantasy. Heightened awareness, which is popular culture's aim at all times, and now available through head-mounted displays (HMD), also involves human emotions and the subtleties of human intuition.
    The sixth chapter looks at this interfacing of humans and machines and begins with a series of questions. The crucial one, to my mind, is this: "Does the distinction between humans and technology contribute to a lack of understanding of the continuous interrelationship and interdependence that exists between humans and all of their creations?" (p. 125) Burnett suggests that to use biological or mechanical views of the computer/mind (the computer as an input/output device) Limits our understanding of the ways in which we interact with machines. He thus points to the role of language, the conversations (including the one we held with machines when we were children) that seem to suggest a wholly different kind of relationship. Peer-to-peer communication (P2P), which is arguably the most widely used exchange mode of images today, is the subject of chapter seven. The issue here is whether P2P affects community building or community destruction. Burnett argues that the trope of community can be used to explore the flow of historical events that make up a continuum-from 17th-century letter writing to e-mail. In the new media-and Burnett uses the example of popular music which can be sampled, and reedited to create new compositions - the interpretive space is more flexible. Private networks can be set up, and the process of information retrieval (about which Burnett has already expended considerable space in the early chapters) involves a lot more of visualization. P2P networks, as Burnett points out, are about information management. They are about the harmony between machines and humans, and constitute a new ecology of communications. Turning to computer games, Burnett looks at the processes of interaction, experience, and reconstruction in simulated artificial life worlds, animations, and video images. For Burnett (like Andrew Darley, 2000 and Richard Doyle, 2003) the interactivity of the new media games suggests a greater degree of engagement with imageworlds. Today many facets of looking, listening, and gazing can be turned into aesthetic forms with the new media. Digital technology literally reanimates the world, as Burnett demonstrates in bis concluding chapter. Burnett concludes that images no longer simply represent the world-they shape our very interaction with it; they become the foundation for our understanding the spaces, places, and historical moments that we inhabit. Burnett concludes his book with the suggestion that intelligence is now a distributed phenomenon (here closely paralleling Katherine Hayles' argument that subjectivity is dispersed through the cybernetic circuit, 1999). There is no one center of information or knowledge. Intersections of human creativity, work, and connectivity "spread" (Burnett's term) "intelligence through the use of mediated devices and images, as well as sounds" (p. 221).
    Burnett's work is a useful basic primer an the new media. One of the chief attractions here is his clear language, devoid of the jargon of either computer sciences or advanced critical theory. This makes How Images Think an accessible introduction to digital cultures. Burnett explores the impact of the new technologies an not just image-making but an image-effects, and the ways in which images constitute our ecologies of identity, communication, and subject-hood. While some of the sections seem a little too basic (especially where he speaks about the ways in which we constitute an object as an object of art, see above), especially in the wake of reception theory, it still remains a starting point for those interested in cultural studies of the new media. The Gase Burnett makes out for the transformation of the ways in which we look at images has been strengthened by his attention to the history of this transformation-from photography through television and cinema and now to immersive virtual reality systems. Joseph Koemer (2004) has pointed out that the iconoclasm of early modern Europe actually demonstrates how idolatory was integral to the image-breakers' core belief. As Koerner puts it, "images never go away ... they persist and function by being perpetually destroyed" (p. 12). Burnett, likewise, argues that images in new media are reformed to suit new contexts of meaning-production-even when they appear to be destroyed. Images are recast, and the degree of their realism (or fantasy) heightened or diminished-but they do not "go away." Images do think, but-if I can parse Burnett's entire work-they think with, through, and in human intelligence, emotions, and intuitions. Images are uncanny-they are both us and not-us, ours and not-ours. There is, surprisingly, one factual error. Burnett claims that Myron Kreuger pioneered the term "virtual reality." To the best of my knowledge, it was Jaron Lanier who did so (see Featherstone & Burrows, 1998 [1995], p. 5)."
  8. Wainer, H.: Picturing the uncertain world : how to understand, communicate, and control uncertainty through graphical display (2009) 0.00
    0.001353075 = product of:
      0.00270615 = sum of:
        0.00270615 = product of:
          0.0054123 = sum of:
            0.0054123 = weight(_text_:a in 1451) [ClassicSimilarity], result of:
              0.0054123 = score(doc=1451,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.10191591 = fieldWeight in 1451, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1451)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In his entertaining and informative book "Graphic Discovery", Howard Wainer unlocked the power of graphical display to make complex problems clear. Now he's back with Picturing the Uncertain World, a book that explores how graphs can serve as maps to guide us when the information we have is ambiguous or incomplete. Using a visually diverse sampling of graphical display, from heartrending autobiographical displays of genocide in the Kovno ghetto to the 'Pie Chart of Mystery' in a "New Yorker" cartoon, Wainer illustrates the many ways graphs can be used - and misused - as we try to make sense of an uncertain world. "Picturing the Uncertain World" takes readers on an extraordinary graphical adventure, revealing how the visual communication of data offers answers to vexing questions yet also highlights the measure of uncertainty in almost everything we do. Are cancer rates higher or lower in rural communities? How can you know how much money to sock away for retirement when you don't know when you'll die? And where exactly did nineteenth-century novelists get their ideas? These are some of the fascinating questions Wainer invites readers to consider. Along the way he traces the origins and development of graphical display, from William Playfair, who pioneered the use of graphs in the eighteenth century, to instances today where the public has been misled through poorly designed graphs. We live in a world full of uncertainty, yet it is within our grasp to take its measure. Read "Picturing the Uncertain World" and learn how.
  9. Information visualization : human-centered issues and perspectives (2008) 0.00
    0.0011959607 = product of:
      0.0023919214 = sum of:
        0.0023919214 = product of:
          0.0047838427 = sum of:
            0.0047838427 = weight(_text_:a in 3285) [ClassicSimilarity], result of:
              0.0047838427 = score(doc=3285,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.090081796 = fieldWeight in 3285, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3285)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This book is the outcome of the Dagstuhl Seminar on "Information Visualization - Human-Centered Issues in Visual Representation, Interaction, and Evaluation" held at Dagstuhl Castle, Germany, from May 28 to June 1, 2007. Information Visualization (InfoVis) is a relatively new research area, which focuses on the use of visualization techniques to help people understand and analyze data.This book documents and extends the findings and discussions of the various sessions in detail. The seven contributions cover the most important topics: Part I is on general reflections on the value of information visualization; evaluating information visualizations; theoretical foundations of information visualization; teaching information visualization. Part II deals with specific aspects on creation and collaboration: engaging new audiences for information visualization; process and pitfalls in writing information visualization research papers; and visual analytics: definition, process, and challenges.
    Editor
    Kerren, A. u.a.
  10. Representation in scientific practice revisited (2014) 0.00
    0.0011717974 = product of:
      0.0023435948 = sum of:
        0.0023435948 = product of:
          0.0046871896 = sum of:
            0.0046871896 = weight(_text_:a in 3543) [ClassicSimilarity], result of:
              0.0046871896 = score(doc=3543,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.088261776 = fieldWeight in 3543, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3543)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Representation in Scientific Practice, published by the MIT Press in 1990, helped coalesce a long-standing interest in scientific visualization among historians, philosophers, and sociologists of science and remains a touchstone for current investigations in science and technology studies. This volume revisits the topic, taking into account both the changing conceptual landscape of STS and the emergence of new imaging technologies in scientific practice. It offers cutting-edge research on a broad array of fields that study information as well as short reflections on the evolution of the field by leading scholars, including some of the contributors to the 1990 volume. The essays consider the ways in which viewing experiences are crafted in the digital era; the embodied nature of work with digital technologies; the constitutive role of materials and technologies -- from chalkboards to brain scans -- in the production of new scientific knowledge; the metaphors and images mobilized by communities of practice; and the status and significance of scientific imagery in professional and popular culture. ContributorsMorana Alac, Michael Barany, Anne Beaulieu, Annamaria Carusi, Catelijne Coopmans, Lorraine Daston, Sarah de Rijcke, Joseph Dumit, Emma Frow, Yann Giraud, Aud Sissel Hoel, Martin Kemp, Bruno Latour, John Law, Michael Lynch, Donald MacKenzie, Cyrus Mody, Natasha Myers, Rachel Prentice, Arie Rip, Martin Ruivenkamp, Lucy Suchman, Janet Vertesi, Steve Woolgar

Languages

Subjects