Search (3 results, page 1 of 1)

  • × author_ss:"Nooy, W. de"
  • × author_ss:"Leydesdorff, L."
  1. Leydesdorff, L.; Radicchi, F.; Bornmann, L.; Castellano, C.; Nooy, W. de: Field-normalized impact factors (IFs) : a comparison of rescaling and fractionally counted IFs (2013) 0.00
    0.0015795645 = product of:
      0.003159129 = sum of:
        0.003159129 = product of:
          0.006318258 = sum of:
            0.006318258 = weight(_text_:a in 1108) [ClassicSimilarity], result of:
              0.006318258 = score(doc=1108,freq=6.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.13239266 = fieldWeight in 1108, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1108)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Two methods for comparing impact factors and citation rates across fields of science are tested against each other using citations to the 3,705 journals in the Science Citation Index 2010 (CD-Rom version of SCI) and the 13 field categories used for the Science and Engineering Indicators of the U.S. National Science Board. We compare (a) normalization by counting citations in proportion to the length of the reference list (1/N of references) with (b) rescaling by dividing citation scores by the arithmetic mean of the citation rate of the cluster. Rescaling is analytical and therefore independent of the quality of the attribution to the sets, whereas fractional counting provides an empirical strategy for normalization among sets (by evaluating the between-group variance). By the fairness test of Radicchi and Castellano (), rescaling outperforms fractional counting of citations for reasons that we consider.
    Type
    a
  2. Leydesdorff, L.; Nooy, W. de: Can "hot spots" in the sciences be mapped using the dynamics of aggregated journal-journal citation relations (2017) 0.00
    0.0015199365 = product of:
      0.003039873 = sum of:
        0.003039873 = product of:
          0.006079746 = sum of:
            0.006079746 = weight(_text_:a in 3328) [ClassicSimilarity], result of:
              0.006079746 = score(doc=3328,freq=8.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.12739488 = fieldWeight in 3328, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3328)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Using 3 years of the Journal Citation Reports (2011, 2012, and 2013), indicators of transitions in 2012 (between 2011 and 2013) were studied using methodologies based on entropy statistics. Changes can be indicated at the level of journals using the margin totals of entropy production along the row or column vectors, but also at the level of links among journals by importing the transition matrices into network analysis and visualization programs (and using community-finding algorithms). Seventy-four journals were flagged in terms of discontinuous changes in their citations, but 3,114 journals were involved in "hot" links. Most of these links are embedded in a main component; 78 clusters (containing 172 journals) were flagged as potential "hot spots" emerging at the network level. An additional finding was that PLoS ONE introduced a new communication dynamic into the database. The limitations of the methodology were elaborated using an example. The results of the study indicate where developments in the citation dynamics can be considered as significantly unexpected. This can be used as heuristic information, but what a "hot spot" in terms of the entropy statistics of aggregated citation relations means substantively can be expected to vary from case to case.
    Type
    a
  3. Leydesdorff, L.; Moya-Anegón, F. de; Nooy, W. de: Aggregated journal-journal citation relations in scopus and web of science matched and compared in terms of networks, maps, and interactive overlays (2016) 0.00
    7.5996824E-4 = product of:
      0.0015199365 = sum of:
        0.0015199365 = product of:
          0.003039873 = sum of:
            0.003039873 = weight(_text_:a in 3090) [ClassicSimilarity], result of:
              0.003039873 = score(doc=3090,freq=2.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.06369744 = fieldWeight in 3090, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3090)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a