Search (6 results, page 1 of 1)

  • × author_ss:"Rahmstorf, G."
  • × theme_ss:"Computerlinguistik"
  1. Rahmstorf, G.: Concept structures for large vocabularies (1998) 0.02
    0.02047082 = product of:
      0.04094164 = sum of:
        0.04094164 = sum of:
          0.007295696 = weight(_text_:a in 75) [ClassicSimilarity], result of:
            0.007295696 = score(doc=75,freq=8.0), product of:
              0.04772363 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.041389145 = queryNorm
              0.15287387 = fieldWeight in 75, product of:
                2.828427 = tf(freq=8.0), with freq of:
                  8.0 = termFreq=8.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046875 = fieldNorm(doc=75)
          0.033645947 = weight(_text_:22 in 75) [ClassicSimilarity], result of:
            0.033645947 = score(doc=75,freq=2.0), product of:
              0.14493774 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.041389145 = queryNorm
              0.23214069 = fieldWeight in 75, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=75)
      0.5 = coord(1/2)
    
    Abstract
    A technology is described which supports the acquisition, visualisation and manipulation of large vocabularies with associated structures. It is used for dictionary production, terminology data bases, thesauri, library classification systems etc. Essential features of the technology are a lexicographic user interface, variable word description, unlimited list of word readings, a concept language, automatic transformations of formulas into graphic structures, structure manipulation operations and retransformation into formulas. The concept language includes notations for undefined concepts. The structure of defined concepts can be constructed interactively. The technology supports the generation of large vocabularies with structures representing word senses. Concept structures and ordering systems for indexing and retrieval can be constructed separately and connected by associating relations.
    Date
    30.12.2001 19:01:22
    Type
    a
  2. Rahmstorf, G.: Semantisches Information Retrieval (1994) 0.00
    0.0021279112 = product of:
      0.0042558224 = sum of:
        0.0042558224 = product of:
          0.008511645 = sum of:
            0.008511645 = weight(_text_:a in 8879) [ClassicSimilarity], result of:
              0.008511645 = score(doc=8879,freq=2.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.17835285 = fieldWeight in 8879, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.109375 = fieldNorm(doc=8879)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  3. Rahmstorf, G.: Information retrieval using conceptual representations of phrases (1994) 0.00
    0.001823924 = product of:
      0.003647848 = sum of:
        0.003647848 = product of:
          0.007295696 = sum of:
            0.007295696 = weight(_text_:a in 7862) [ClassicSimilarity], result of:
              0.007295696 = score(doc=7862,freq=8.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.15287387 = fieldWeight in 7862, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=7862)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The information retrieval problem is described starting from an analysis of the concepts 'user's information request' and 'information offerings of texts'. It is shown that natural language phrases are a more adequate medium for expressing information requests and information offerings than character string based query and indexing languages complemented by Boolean oprators. The phrases must be represented as concepts to reach a language invariant level for rule based relevance analysis. The special type of representation called advanced thesaurus is used for the semantic representation of natural language phrases and for relevance processing. The analysis of the retrieval problem leads to a symmetric system structure
    Type
    a
  4. Rahmstorf, G.: Compositional semantics and concept representation (1991) 0.00
    0.001719612 = product of:
      0.003439224 = sum of:
        0.003439224 = product of:
          0.006878448 = sum of:
            0.006878448 = weight(_text_:a in 6673) [ClassicSimilarity], result of:
              0.006878448 = score(doc=6673,freq=4.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.14413087 = fieldWeight in 6673, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=6673)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Concept systems are not only used in the sciences, but also in secondary supporting fields, e.g. in libraries, in documentation, in terminology and increasingly also in knowledge representation. It is suggested that the development of concept systems be based on semantic analysis. Methodical steps are described. The principle of morpho-syntactic composition in semantics will serve as a theoretical basis for the suggested method. The implications and limitations of this principle will be demonstrated
    Type
    a
  5. Rahmstorf, G.: Wortmodell und Begriffssprache als Basis des semantischen Retrievals (2000) 0.00
    0.0010639556 = product of:
      0.0021279112 = sum of:
        0.0021279112 = product of:
          0.0042558224 = sum of:
            0.0042558224 = weight(_text_:a in 5484) [ClassicSimilarity], result of:
              0.0042558224 = score(doc=5484,freq=2.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.089176424 = fieldWeight in 5484, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5484)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  6. Rahmstorf, G.: Rückkehr von Ordnung in die Informationstechnik? (2000) 0.00
    9.11962E-4 = product of:
      0.001823924 = sum of:
        0.001823924 = product of:
          0.003647848 = sum of:
            0.003647848 = weight(_text_:a in 5504) [ClassicSimilarity], result of:
              0.003647848 = score(doc=5504,freq=2.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.07643694 = fieldWeight in 5504, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5504)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a