Search (36 results, page 1 of 2)

  • × author_ss:"Soergel, D."
  1. Soergel, D.: Knowledge organization for learning (2014) 0.03
    0.030765813 = product of:
      0.061531626 = sum of:
        0.061531626 = sum of:
          0.0060186423 = weight(_text_:a in 1400) [ClassicSimilarity], result of:
            0.0060186423 = score(doc=1400,freq=4.0), product of:
              0.04772363 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.041389145 = queryNorm
              0.12611452 = fieldWeight in 1400, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.0546875 = fieldNorm(doc=1400)
          0.055512983 = weight(_text_:22 in 1400) [ClassicSimilarity], result of:
            0.055512983 = score(doc=1400,freq=4.0), product of:
              0.14493774 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.041389145 = queryNorm
              0.38301262 = fieldWeight in 1400, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0546875 = fieldNorm(doc=1400)
      0.5 = coord(1/2)
    
    Abstract
    This paper discusses and illustrates through examples how meaningful or deep learning can be supported through well-structured presentation of material, through giving learners schemas they can use to organize knowledge in their minds, and through helping learners to understand knowledge organization principles they can use to construct their own schemas. It is a call to all authors, educators and information designers to pay attention to meaningful presentation that expresses the internal structure of the domain and facilitates the learner's assimilation of concepts and their relationships.
    Pages
    S.22-32
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
    Type
    a
  2. Berti, Jr., D.W.; Lima, G.; Maculan, B.; Soergel, D.: Computer-assisted checking of conceptual relationships in a large thesaurus (2018) 0.03
    0.025869856 = product of:
      0.05173971 = sum of:
        0.05173971 = sum of:
          0.006878448 = weight(_text_:a in 4721) [ClassicSimilarity], result of:
            0.006878448 = score(doc=4721,freq=4.0), product of:
              0.04772363 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.041389145 = queryNorm
              0.14413087 = fieldWeight in 4721, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.0625 = fieldNorm(doc=4721)
          0.044861265 = weight(_text_:22 in 4721) [ClassicSimilarity], result of:
            0.044861265 = score(doc=4721,freq=2.0), product of:
              0.14493774 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.041389145 = queryNorm
              0.30952093 = fieldWeight in 4721, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0625 = fieldNorm(doc=4721)
      0.5 = coord(1/2)
    
    Date
    17. 1.2019 19:04:22
    Type
    a
  3. Ahn, J.-w.; Soergel, D.; Lin, X.; Zhang, M.: Mapping between ARTstor terms and the Getty Art and Architecture Thesaurus (2014) 0.02
    0.020901391 = product of:
      0.041802783 = sum of:
        0.041802783 = sum of:
          0.008156837 = weight(_text_:a in 1421) [ClassicSimilarity], result of:
            0.008156837 = score(doc=1421,freq=10.0), product of:
              0.04772363 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.041389145 = queryNorm
              0.1709182 = fieldWeight in 1421, product of:
                3.1622777 = tf(freq=10.0), with freq of:
                  10.0 = termFreq=10.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046875 = fieldNorm(doc=1421)
          0.033645947 = weight(_text_:22 in 1421) [ClassicSimilarity], result of:
            0.033645947 = score(doc=1421,freq=2.0), product of:
              0.14493774 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.041389145 = queryNorm
              0.23214069 = fieldWeight in 1421, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=1421)
      0.5 = coord(1/2)
    
    Abstract
    To make better use of knowledge organization systems (KOS) for query expansion, we have developed a pattern-based technique for composition ontology mapping in a specific domain. The technique was tested in a two-step mapping. The user's free-text queries were first mapped to Getty's Art & Architecture Thesaurus (AAT) terms. The AAT-based queries were then mapped to a search engine's indexing vocabulary (ARTstor terms). The result indicated that our technique has improved the mapping success rate from 40% to 70%. We discuss also how the technique may be applied to other KOS mapping and how it may be implemented in practical systems.
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
    Type
    a
  4. Komlodi, A.; Soergel, D.; Marchionini, G.: Search histories for user support in user interfaces (2006) 0.02
    0.019982103 = product of:
      0.039964207 = sum of:
        0.039964207 = sum of:
          0.006318258 = weight(_text_:a in 5298) [ClassicSimilarity], result of:
            0.006318258 = score(doc=5298,freq=6.0), product of:
              0.04772363 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.041389145 = queryNorm
              0.13239266 = fieldWeight in 5298, product of:
                2.4494898 = tf(freq=6.0), with freq of:
                  6.0 = termFreq=6.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046875 = fieldNorm(doc=5298)
          0.033645947 = weight(_text_:22 in 5298) [ClassicSimilarity], result of:
            0.033645947 = score(doc=5298,freq=2.0), product of:
              0.14493774 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.041389145 = queryNorm
              0.23214069 = fieldWeight in 5298, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=5298)
      0.5 = coord(1/2)
    
    Abstract
    The authors describe user interface tools based on search histories to support legal information seekers. The design of the tools was informed by the results of a user study (Komlodi, 2002a) that examined the use of human memory, external memory aids, and search histories in legal information seeking and derived interface design recommendations for information storage and retrieval systems. The data collected were analyzed to identify potential task areas where search histories can support information seeking and use. The results show that many information-seeking tasks can take advantage of automatically and manually recorded history information. These findings encouraged the design of user interface tools building on search history information: direct search history displays, history-enabled scratchpad facilities, and organized results collection tools.
    Date
    22. 7.2006 18:04:19
    Type
    a
  5. Zhang, P.; Soergel, D.: Towards a comprehensive model of the cognitive process and mechanisms of individual sensemaking (2014) 0.02
    0.01804052 = product of:
      0.03608104 = sum of:
        0.03608104 = sum of:
          0.008042749 = weight(_text_:a in 1344) [ClassicSimilarity], result of:
            0.008042749 = score(doc=1344,freq=14.0), product of:
              0.04772363 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.041389145 = queryNorm
              0.1685276 = fieldWeight in 1344, product of:
                3.7416575 = tf(freq=14.0), with freq of:
                  14.0 = termFreq=14.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1344)
          0.028038291 = weight(_text_:22 in 1344) [ClassicSimilarity], result of:
            0.028038291 = score(doc=1344,freq=2.0), product of:
              0.14493774 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.041389145 = queryNorm
              0.19345059 = fieldWeight in 1344, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1344)
      0.5 = coord(1/2)
    
    Abstract
    This review introduces a comprehensive model of the cognitive process and mechanisms of individual sensemaking to provide a theoretical basis for: - empirical studies that improve our understanding of the cognitive process and mechanisms of sensemaking and integration of results of such studies; - education in critical thinking and sensemaking skills; - the design of sensemaking assistant tools that support and guide users. The paper reviews and extends existing sensemaking models with ideas from learning and cognition. It reviews literature on sensemaking models in human-computer interaction (HCI), cognitive system engineering, organizational communication, and library and information sciences (LIS), learning theories, cognitive psychology, and task-based information seeking. The model resulting from this synthesis moves to a stronger basis for explaining sensemaking behaviors and conceptual changes. The model illustrates the iterative processes of sensemaking, extends existing models that focus on activities by integrating cognitive mechanisms and the creation of instantiated structure elements of knowledge, and different types of conceptual change to show a complete picture of the cognitive processes of sensemaking. The processes and cognitive mechanisms identified provide better foundations for knowledge creation, organization, and sharing practices and a stronger basis for design of sensemaking assistant systems and tools.
    Date
    22. 8.2014 16:55:39
    Type
    a
  6. Soergel, D.: Unleashing the power of data through organization : structure and connections for meaning, learning and discovery (2015) 0.02
    0.017059019 = product of:
      0.034118038 = sum of:
        0.034118038 = sum of:
          0.006079746 = weight(_text_:a in 2376) [ClassicSimilarity], result of:
            0.006079746 = score(doc=2376,freq=8.0), product of:
              0.04772363 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.041389145 = queryNorm
              0.12739488 = fieldWeight in 2376, product of:
                2.828427 = tf(freq=8.0), with freq of:
                  8.0 = termFreq=8.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.0390625 = fieldNorm(doc=2376)
          0.028038291 = weight(_text_:22 in 2376) [ClassicSimilarity], result of:
            0.028038291 = score(doc=2376,freq=2.0), product of:
              0.14493774 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.041389145 = queryNorm
              0.19345059 = fieldWeight in 2376, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=2376)
      0.5 = coord(1/2)
    
    Abstract
    Knowledge organization is needed everywhere. Its importance is marked by its pervasiveness. This paper will show many areas, tasks, and functions where proper use of knowledge organization, construed as broadly as the term implies, provides support for learning and understanding, for sense making and meaning making, for inference, and for discovery by people and computer programs and thereby will make the world a better place. The paper focuses not on metadata but rather on structuring and representing the actual data or knowledge itself and argues for more communication between the largely separated KO, ontology, data modeling, and semantic web communities to address the many problems that need better solutions. In particular, the paper discusses the application of knowledge organization in knowledge bases for question answering and cognitive systems, knowledge bases for information extraction from text or multimedia, linked data, big data and data analytics, electronic health records as one example, influence diagrams (causal maps), dynamic system models, process diagrams, concept maps, and other node-link diagrams, information systems in organizations, knowledge organization for understanding and learning, and knowledge transfer between domains. The paper argues for moving beyond triples to a more powerful representation using entities and multi-way relationships but not attributes.
    Content
    Selected Papers from "Knowledge Organization, Making a Difference: ISKO-UK Biennial Conference, 13th-14th July 2015, London. Vgl.: http://www.ergon-verlag.de/isko_ko/downloads/ko_42_2015_6.
    Date
    27.11.2015 20:52:22
    Type
    a
  7. Fidel, R.; Soergel, D.: Factors affecting online bibliographic retrieval : a conceptual framework for research (1983) 0.00
    0.003439224 = product of:
      0.006878448 = sum of:
        0.006878448 = product of:
          0.013756896 = sum of:
            0.013756896 = weight(_text_:a in 2588) [ClassicSimilarity], result of:
              0.013756896 = score(doc=2588,freq=4.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.28826174 = fieldWeight in 2588, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.125 = fieldNorm(doc=2588)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  8. Soergel, D.: Mathematical analysis of documentation systems : an attempt to a theory of classification and search request formulation (1967) 0.00
    0.0033986818 = product of:
      0.0067973635 = sum of:
        0.0067973635 = product of:
          0.013594727 = sum of:
            0.013594727 = weight(_text_:a in 5449) [ClassicSimilarity], result of:
              0.013594727 = score(doc=5449,freq=40.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.28486365 = fieldWeight in 5449, product of:
                  6.3245554 = tf(freq=40.0), with freq of:
                    40.0 = termFreq=40.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5449)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    As an attempt to make a general structural theory of information retrieval, a documentation system (DS) is defined as a formal system consisting of (a) a set o of objects (documents); (b) a set A++ of elementary attributes (key-words), from which further attributes may be constructed: A++ generates A; (c) a set of axioms of the form X++(x)=m (m¯M, M a set of constant connecting attributes with objects: from the axioms further theorems (=true statements) may be constructed. By use of the theorems, different mappings O -> P(o) (P(o) set of all subsets of o) (search question -> set of documents retrieved) are defined. The type of a DS depends on two basic decisions: (1) choice of the rules for the construction of attributes and theorems, e.g., logical product in coordinate indexing; links. (2) choice of M; M may consist of the two constants 'applicable' and 'not applicable', or some positive integers, ...; Further practical decisions: A++ hierarchical or not; kind of mapping; introduction of roles (=further attributes). The most simple case - ordinary two-valued Coordinate Indexing - is discusssed in detail; o is a free distributive (but not Boolean) lattice, the homographic image a ring of subsets of o; instead of negation which is not useful, a useful retrieval operation 'praeternagation' is introduced. Furthermore these are discussed: a generalized definition of superimposed coding, some functions for the distance of objects or attributes; optimization and automatic derivation of classifications. The model takes into account term-term relations and document-document relations. It may serve as a structural framework in terms of which the functional problems of retrieval theory may be expressed more clearly
    Type
    a
  9. Wang, P.; Soergel, D.: Beyond topical relevance : document selection behaviour of real users of IR systems (1993) 0.00
    0.0029784553 = product of:
      0.0059569106 = sum of:
        0.0059569106 = product of:
          0.011913821 = sum of:
            0.011913821 = weight(_text_:a in 7960) [ClassicSimilarity], result of:
              0.011913821 = score(doc=7960,freq=12.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.24964198 = fieldWeight in 7960, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=7960)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Reports on part of a study of real users' behaviour in selecting documents from a list of citations resulting from a search of an information retrieval system. Document selection involves value judgements and decision making. Understanding how users evaluate documents and make decisions provides a basis for designing intelligent information retrieval system that can do a better job of predicting usefulness
    Type
    a
  10. Soergel, D.: Information structure management : a unified framework for indexing and searching in database, expert, information-retrieval, and hypermedia systems (1994) 0.00
    0.002579418 = product of:
      0.005158836 = sum of:
        0.005158836 = product of:
          0.010317672 = sum of:
            0.010317672 = weight(_text_:a in 2984) [ClassicSimilarity], result of:
              0.010317672 = score(doc=2984,freq=4.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.2161963 = fieldWeight in 2984, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.09375 = fieldNorm(doc=2984)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  11. Soergel, D.; Lauser, B.; Liang, A.; Fisseha, F.; Keizer, J.; Katz, S.: Reengineering thesauri for new applications : the AGROVOC example (2004) 0.00
    0.002579418 = product of:
      0.005158836 = sum of:
        0.005158836 = product of:
          0.010317672 = sum of:
            0.010317672 = weight(_text_:a in 2347) [ClassicSimilarity], result of:
              0.010317672 = score(doc=2347,freq=4.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.2161963 = fieldWeight in 2347, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.09375 = fieldNorm(doc=2347)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  12. Wang, P.; Soergel, D.: ¬A cognitive model of document use during a research project : Study I: Document selection (1998) 0.00
    0.00252053 = product of:
      0.00504106 = sum of:
        0.00504106 = product of:
          0.01008212 = sum of:
            0.01008212 = weight(_text_:a in 443) [ClassicSimilarity], result of:
              0.01008212 = score(doc=443,freq=22.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.21126054 = fieldWeight in 443, product of:
                  4.690416 = tf(freq=22.0), with freq of:
                    22.0 = termFreq=22.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=443)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This article proposes a model of document selection by real users of a bibliographic retrieval system. It reports on Part 1 of a longitudinal study of decision making on document use by academics during a actual research project. (Part 2 followed up the same users on how the selected documents were actually used in subsequent stages). The participants are 25 self-selected faculty and graduate students in Agricultural Economics. After a reference interview, the researcher conducted a search of DIALOG databases and prepared a printout. The users selected documents from this printout, They were asked to read and think aloud while selecting documents. There verbal reports were recorded and analyzed from a utiliy-theoretic perspective. The following model of the decision-making in the selection process emerged: document information lemenets (DIEs) in document records provide the information for judging the documents on 11 criteria (including topicality, orientation, quality, novelty, and authority); the criteria judgments are comninded in an assessment of document value along 5 dimensions (Epistemic, functional, conditional, social, and emotional values), leading to the use decision. This model accounts for the use of personal knowledge and decision strategies applied in the selection process. The model has implications for the design of an intelligent document selection assistant
    Type
    a
  13. Soergel, D.; Helfer, O.: ¬A metrics ontology : an intellectual infrastructure for defining, managing, and applying metrics (2016) 0.00
    0.0024318986 = product of:
      0.004863797 = sum of:
        0.004863797 = product of:
          0.009727594 = sum of:
            0.009727594 = weight(_text_:a in 4927) [ClassicSimilarity], result of:
              0.009727594 = score(doc=4927,freq=8.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.20383182 = fieldWeight in 4927, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4927)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    Knowledge organization for a sustainable world: challenges and perspectives for cultural, scientific, and technological sharing in a connected society : proceedings of the Fourteenth International ISKO Conference 27-29 September 2016, Rio de Janeiro, Brazil / organized by International Society for Knowledge Organization (ISKO), ISKO-Brazil, São Paulo State University ; edited by José Augusto Chaves Guimarães, Suellen Oliveira Milani, Vera Dodebei
    Type
    a
  14. Huang, X.; Soergel, D.: Relevance: an improved framework for explicating the notion (2013) 0.00
    0.002279905 = product of:
      0.00455981 = sum of:
        0.00455981 = product of:
          0.00911962 = sum of:
            0.00911962 = weight(_text_:a in 527) [ClassicSimilarity], result of:
              0.00911962 = score(doc=527,freq=18.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.19109234 = fieldWeight in 527, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=527)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Synthesizing and building on many ideas from the literature, this article presents an improved conceptual framework that clarifies the notion of relevance with its many elements, variables, criteria, and situational factors. Relevance is defined as a Relationship (R) between an Information Object (I) and an Information Need (N) (which consists of Topic, User, Problem/Task, and Situation/Context) with focus on R. This defines Relevance-as-is (conceptual relevance, strong relevance). To determine relevance, an Agent A (a person or system) operates on a representation I? of the information object and a representation N? of the information need, resulting in relevance-as-determined (operational measure of relevance, weak relevance, an approximation). Retrieval tests compare relevance-as-determined by different agents. This article discusses and compares two major approaches to conceptualizing relevance: the entity-focused approach (focus on elaborating the entities involved in relevance) and the relationship-focused approach (focus on explicating the relational nature of relevance). The article argues that because relevance is fundamentally a relational construct the relationship-focused approach deserves a higher priority and more attention than it has received. The article further elaborates on the elements of the framework with a focus on clarifying several critical issues on the discourse on relevance.
    Type
    a
  15. Soergel, D.: Towards a relation ontology for the Semantic Web (2011) 0.00
    0.0022338415 = product of:
      0.004467683 = sum of:
        0.004467683 = product of:
          0.008935366 = sum of:
            0.008935366 = weight(_text_:a in 4342) [ClassicSimilarity], result of:
              0.008935366 = score(doc=4342,freq=12.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.18723148 = fieldWeight in 4342, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4342)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The Semantic Web consists of data structured for use by computer programs, such as data sets made available under the Linked Open Data initiative. Much of this data is structured following the entity-relationship model encoded in RDF for syntactic interoperability. For semantic interoperability, the semantics of the relationships used in any given dataset needs to be made explicit. Ultimately this requires an inventory of these relationships structured around a relation ontology. This talk will outline a blueprint for such an inventory, including a format for the description/definition of binary and n-ary relations, drawing on ideas put forth in the classification and thesaurus community over the last 60 years, upper level ontologies, systems like FrameNet, the Buffalo Relation Ontology, and an analysis of linked data sets.
    Source
    Classification and ontology: formal approaches and access to knowledge: proceedings of the International UDC Seminar, 19-20 September 2011, The Hague, The Netherlands. Eds.: A. Slavic u. E. Civallero
    Type
    a
  16. Soergel, D.: Digital libraries and knowledge organization (2009) 0.00
    0.002149515 = product of:
      0.00429903 = sum of:
        0.00429903 = product of:
          0.00859806 = sum of:
            0.00859806 = weight(_text_:a in 672) [ClassicSimilarity], result of:
              0.00859806 = score(doc=672,freq=16.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.18016359 = fieldWeight in 672, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=672)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This chapter describes not so much what digital libraries are but what digital libraries with semantic support could and should be. It discusses the nature of Knowledge Organization Systems (KOS) and how KOS can support digital library users. It projects a vision for designers to make and for users to demand better digital libraries. What is a digital library? The term \Digital Library" (DL) is used to refer to a range of systems, from digital object and metadata repositories, reference-linking systems, archives, and content management systems to complex systems that integrate advanced digital library services and support for research and practice communities. A DL may offer many technology-enabled functions and services that support users, both as information producers and as information users. Many of these functions appear in information systems that would not normally be considered digital libraries, making boundaries even more blurry. Instead of pursuing the hopeless quest of coming up with the definition of digital library, we present a framework that allows a clear and somewhat standardized description of any information system so that users can select the system(s) that best meet their requirements. Section 2 gives a broad outline for more detail see the DELOS DL Reference Model.
    Type
    a
  17. Soergel, D.: SemWeb: Proposal for an Open, multifunctional, multilingual system for integrated access to knowledge about concepts and terminology : exploration and development of the concept (1996) 0.00
    0.002149515 = product of:
      0.00429903 = sum of:
        0.00429903 = product of:
          0.00859806 = sum of:
            0.00859806 = weight(_text_:a in 3576) [ClassicSimilarity], result of:
              0.00859806 = score(doc=3576,freq=16.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.18016359 = fieldWeight in 3576, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3576)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This paper presents a proposal for the long-range development of an open, multifunctional, multilingual system for integrated access to many kinds of knowledge about concepts and terminology. The system would draw on existing knowledge bases that are accessible through the Internet or on CD-ROM an on a common integrated distributed knowledge base that would grow incrementally over time. Existing knowledge bases would be accessed through a common interface that would search several knowledge bases, collate the data into a common format, and present them to the user. The common integrated distributed knowledge base would provide an environment in which many contributors could carry out classification and terminological projects more efficiently, with the results available in a common format. Over time, data from other knowledge bases could be incorporated into the common knowledge base, either by actual transfer (provided the knowledge base producers are willing) or by reference through a link. Either way, such incorporation requires intellectual work but allows for tighter integration than common interface access to multiple knowledge bases. Each piece of information in the common knowledge base will have all its sources attached, providing an acknowledgment mechanism that gives due credit to all contributors. The whole system woul be designed to be usable by many levels of users for improved information exchange.
    Content
    Expanded version of a paper published in Advances in Knowledge Organization v.5 (1996): 165-173 (4th Annual ISKO Conference, Washington, D.C., 1996 July 15-18): SemWeb: proposal for an open, multifunctional, multilingual system for integrated access to knowledge about concepts and terminology.
    Type
    a
  18. Golub, K.; Hansson, J.; Soergel, D.; Tudhope, D.: Managing classification in libraries : a methodological outline for evaluating automatic subject indexing and classification in Swedish library catalogues (2015) 0.00
    0.002149515 = product of:
      0.00429903 = sum of:
        0.00429903 = product of:
          0.00859806 = sum of:
            0.00859806 = weight(_text_:a in 2300) [ClassicSimilarity], result of:
              0.00859806 = score(doc=2300,freq=16.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.18016359 = fieldWeight in 2300, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2300)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Subject terms play a crucial role in resource discovery but require substantial effort to produce. Automatic subject classification and indexing address problems of scale and sustainability and can be used to enrich existing bibliographic records, establish more connections across and between resources and enhance consistency of bibliographic data. The paper aims to put forward a complex methodological framework to evaluate automatic classification tools of Swedish textual documents based on the Dewey Decimal Classification (DDC) recently introduced to Swedish libraries. Three major complementary approaches are suggested: a quality-built gold standard, retrieval effects, domain analysis. The gold standard is built based on input from at least two catalogue librarians, end-users expert in the subject, end users inexperienced in the subject and automated tools. Retrieval effects are studied through a combination of assigned and free tasks, including factual and comprehensive types. The study also takes into consideration the different role and character of subject terms in various knowledge domains, such as scientific disciplines. As a theoretical framework, domain analysis is used and applied in relation to the implementation of DDC in Swedish libraries and chosen domains of knowledge within the DDC itself.
    Source
    Classification and authority control: expanding resource discovery: proceedings of the International UDC Seminar 2015, 29-30 October 2015, Lisbon, Portugal. Eds.: Slavic, A. u. M.I. Cordeiro
    Type
    a
  19. Soergel, D.: Software support for thesaurus construction and display (1994) 0.00
    0.0021279112 = product of:
      0.0042558224 = sum of:
        0.0042558224 = product of:
          0.008511645 = sum of:
            0.008511645 = weight(_text_:a in 8890) [ClassicSimilarity], result of:
              0.008511645 = score(doc=8890,freq=2.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.17835285 = fieldWeight in 8890, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.109375 = fieldNorm(doc=8890)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  20. Soergel, D.: Framework for data element standardization (1995) 0.00
    0.0021279112 = product of:
      0.0042558224 = sum of:
        0.0042558224 = product of:
          0.008511645 = sum of:
            0.008511645 = weight(_text_:a in 4574) [ClassicSimilarity], result of:
              0.008511645 = score(doc=4574,freq=2.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.17835285 = fieldWeight in 4574, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.109375 = fieldNorm(doc=4574)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a