Search (1 results, page 1 of 1)

  • × author_ss:"Gil-Berrozpe, J.C."
  • × year_i:[2020 TO 2030}
  1. Gil-Berrozpe, J.C.: Description, categorization, and representation of hyponymy in environmental terminology (2022) 0.01
    0.011798574 = product of:
      0.023597147 = sum of:
        0.023597147 = product of:
          0.047194295 = sum of:
            0.047194295 = weight(_text_:v in 1004) [ClassicSimilarity], result of:
              0.047194295 = score(doc=1004,freq=2.0), product of:
                0.219214 = queryWeight, product of:
                  4.871427 = idf(docFreq=920, maxDocs=44218)
                  0.044999957 = queryNorm
                0.21528868 = fieldWeight in 1004, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.871427 = idf(docFreq=920, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1004)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Terminology has evolved from static and prescriptive theories to dynamic and cognitive approaches. Thanks to these approaches, there have been significant advances in the design and elaboration of terminological resources. This has resulted in the creation of tools such as terminological knowledge bases, which are able to show how concepts are interrelated through different semantic or conceptual relations. Of these relations, hyponymy is the most relevant to terminology work because it deals with concept categorization and term hierarchies. This doctoral thesis presents an enhancement of the semantic structure of EcoLexicon, a terminological knowledge base on environmental science. The aim of this research was to improve the description, categorization, and representation of hyponymy in environmental terminology. Therefore, we created HypoLexicon, a new stand-alone module for EcoLexicon in the form of a hyponymy-based terminological resource. This resource contains twelve terminological entries from four specialized domains (Biology, Chemistry, Civil Engineering, and Geology), which consist of 309 concepts and 465 terms associated with those concepts. This research was mainly based on the theoretical premises of Frame-based Terminology. This theory was combined with Cognitive Linguistics, for conceptual description and representation; Corpus Linguistics, for the extraction and processing of linguistic and terminological information; and Ontology, related to hyponymy and relevant for concept categorization. HypoLexicon was constructed from the following materials: (i) the EcoLexicon English Corpus; (ii) other specialized terminological resources, including EcoLexicon; (iii) Sketch Engine; and (iv) Lexonomy. This thesis explains the methodologies applied for corpus extraction and compilation, corpus analysis, the creation of conceptual hierarchies, and the design of the terminological template. The results of the creation of HypoLexicon are discussed by highlighting the information in the hyponymy-based terminological entries: (i) parent concept (hypernym); (ii) child concepts (hyponyms, with various hyponymy levels); (iii) terminological definitions; (iv) conceptual categories; (v) hyponymy subtypes; and (vi) hyponymic contexts. Furthermore, the features and the navigation within HypoLexicon are described from the user interface and the admin interface. In conclusion, this doctoral thesis lays the groundwork for developing a terminological resource that includes definitional, relational, ontological and contextual information about specialized hypernyms and hyponyms. All of this information on specialized knowledge is simple to follow thanks to the hierarchical structure of the terminological template used in HypoLexicon. Therefore, not only does it enhance knowledge representation, but it also facilitates its acquisition.