Search (3 results, page 1 of 1)

  • × subject_ss:"Knowledge representation (Information theory)"
  1. Gödert, W.; Hubrich, J.; Nagelschmidt, M.: Semantic knowledge representation for information retrieval (2014) 0.02
    0.02240327 = product of:
      0.04480654 = sum of:
        0.04480654 = product of:
          0.06720981 = sum of:
            0.030349022 = weight(_text_:j in 987) [ClassicSimilarity], result of:
              0.030349022 = score(doc=987,freq=2.0), product of:
                0.14407988 = queryWeight, product of:
                  3.1774964 = idf(docFreq=5010, maxDocs=44218)
                  0.04534384 = queryNorm
                0.21064025 = fieldWeight in 987, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1774964 = idf(docFreq=5010, maxDocs=44218)
                  0.046875 = fieldNorm(doc=987)
            0.036860786 = weight(_text_:22 in 987) [ClassicSimilarity], result of:
              0.036860786 = score(doc=987,freq=2.0), product of:
                0.1587864 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04534384 = queryNorm
                0.23214069 = fieldWeight in 987, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=987)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Date
    23. 7.2017 13:49:22
  2. Philosophy, computing and information science (2014) 0.00
    0.0033721137 = product of:
      0.0067442274 = sum of:
        0.0067442274 = product of:
          0.020232681 = sum of:
            0.020232681 = weight(_text_:j in 3407) [ClassicSimilarity], result of:
              0.020232681 = score(doc=3407,freq=2.0), product of:
                0.14407988 = queryWeight, product of:
                  3.1774964 = idf(docFreq=5010, maxDocs=44218)
                  0.04534384 = queryNorm
                0.14042683 = fieldWeight in 3407, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1774964 = idf(docFreq=5010, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3407)
          0.33333334 = coord(1/3)
      0.5 = coord(1/2)
    
    Content
    Introduction: Philosophy's Relevance in Computing and Information Science - Ruth Hagengruber and Uwe V.Riss Part I: Philosophy of Computing and Information 1 The Fourth Revolution in our Self-Understanding - Luciano Floridi -- 2 Information Transfer as a Metaphor - Jakob Krebs -- 3 With Aristotle towards a Differentiated Concept of Information? - Uwe Voigt -- 4 The Influence of Philosophy on the Understanding of Computing and Information - Klaus Fuchs-Kittowski -- Part II: Complexity and System Theory 5 The Emergence of Self-Conscious Systems: From Symbolic AI to Embodied Robotics - Klaus Mainzer -- 6 Artificial Intelligence as a New Metaphysical Project - Aziz F. Zambak Part III: Ontology 7 The Relevance of Philosophical Ontology to Information and Computer Science - Barry Smith -- 8 Ontology, its Origins and its Meaning in Information Science - Jens Kohne -- 9 Smart Questions: Steps towards an Ontology of Questions and Answers - Ludwig Jaskolla and Matthias Rugel Part IV: Knowledge Representation 10 Sophisticated Knowledge Representation and Reasoning Requires Philosophy - Selmer Bringsjord, Micah Clark and Joshua Taylor -- 11 On Frames and Theory-Elements of Structuralism Holger Andreas -- 12 Ontological Complexity and Human Culture David J. Saab and Frederico Fonseca Part V: Action Theory 13 Knowledge and Action between Abstraction and Concretion - Uwe V.Riss -- 14 Action-Directing Construction of Reality in Product Creation Using Social Software: Employing Philosophy to Solve Real-World Problems - Kai Holzweifiig and Jens Krüger -- 15 An Action-Theory-Based Treatment ofTemporal Individuals - Tillmann Pross -- 16 Four Rules for Classifying Social Entities - Ludger Jansen Part VI: Info-Computationalism 17 Info-Computationalism and Philosophical Aspects of Research in Information Sciences - Gordana Dodig-Crnkovic -- 18 Pancomputationalism: Theory or Metaphor ? - Vincent C. Mutter Part VII: Ethics 19 The Importance of the Sources of Professional Obligations - Francis C. Dane
  3. Weller, K.: Knowledge representation in the Social Semantic Web (2010) 0.00
    0.0018038497 = product of:
      0.0036076994 = sum of:
        0.0036076994 = product of:
          0.010823098 = sum of:
            0.010823098 = weight(_text_:h in 4515) [ClassicSimilarity], result of:
              0.010823098 = score(doc=4515,freq=2.0), product of:
                0.11265446 = queryWeight, product of:
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.04534384 = queryNorm
                0.096073404 = fieldWeight in 4515, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=4515)
          0.33333334 = coord(1/3)
      0.5 = coord(1/2)
    
    Footnote
    Rez. in: iwp 62(2011) H.4, S.205-206 (C. Carstens): "Welche Arten der Wissensrepräsentation existieren im Web, wie ausgeprägt sind semantische Strukturen in diesem Kontext, und wie können soziale Aktivitäten im Sinne des Web 2.0 zur Strukturierung von Wissen im Web beitragen? Diesen Fragen widmet sich Wellers Buch mit dem Titel Knowledge Representation in the Social Semantic Web. Der Begriff Social Semantic Web spielt einerseits auf die semantische Strukturierung von Daten im Sinne des Semantic Web an und deutet andererseits auf die zunehmend kollaborative Inhaltserstellung im Social Web hin. Weller greift die Entwicklungen in diesen beiden Bereichen auf und beleuchtet die Möglichkeiten und Herausforderungen, die aus der Kombination der Aktivitäten im Semantic Web und im Social Web entstehen. Der Fokus des Buches liegt dabei primär auf den konzeptuellen Herausforderungen, die sich in diesem Kontext ergeben. So strebt die originäre Vision des Semantic Web die Annotation aller Webinhalte mit ausdrucksstarken, hochformalisierten Ontologien an. Im Social Web hingegen werden große Mengen an Daten von Nutzern erstellt, die häufig mithilfe von unkontrollierten Tags in Folksonomies annotiert werden. Weller sieht in derartigen kollaborativ erstellten Inhalten und Annotationen großes Potenzial für die semantische Indexierung, eine wichtige Voraussetzung für das Retrieval im Web. Das Hauptinteresse des Buches besteht daher darin, eine Brücke zwischen den Wissensrepräsentations-Methoden im Social Web und im Semantic Web zu schlagen. Um dieser Fragestellung nachzugehen, gliedert sich das Buch in drei Teile. . . .