Search (37 results, page 2 of 2)

  • × author_ss:"Cole, C."
  1. Cole, C.: ¬The consciousness' drive : information need and the search for meaning (2018) 0.00
    0.002269176 = product of:
      0.004538352 = sum of:
        0.004538352 = product of:
          0.009076704 = sum of:
            0.009076704 = weight(_text_:a in 480) [ClassicSimilarity], result of:
              0.009076704 = score(doc=480,freq=40.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.1709182 = fieldWeight in 480, product of:
                  6.3245554 = tf(freq=40.0), with freq of:
                    40.0 = termFreq=40.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=480)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    What is the uniquely human factor in finding and using information to produce new knowledge? Is there an underlying aspect of our thinking that cannot be imitated by the AI-equipped machines that will increasingly dominate our lives? This book answers these questions, and tells us about our consciousness - its drive or intention in seeking information in the world around us, and how we are able to construct new knowledge from this information. The book is divided into three parts, each with an introduction and a conclusion that relate the theories and models presented to the real-world experience of someone using a search engine. First, Part I defines the exceptionality of human consciousness and its need for new information and how, uniquely among all other species, we frame our interactions with the world. Part II then investigates the problem of finding our real information need during information searches, and how our exceptional ability to frame our interactions with the world blocks us from finding the information we really need. Lastly, Part III details the solution to this framing problem and its operational implications for search engine design for everyone whose objective is the production of new knowledge. In this book, Charles Cole deliberately writes in a conversational style for a broader readership, keeping references to research material to the bare minimum. Replicating the structure of a detective novel, he builds his arguments towards a climax at the end of the book. For our video-game, video-on-demand times, he has visualized the ideas that form the book's thesis in over 90 original diagrams. And above all, he establishes a link between information need and knowledge production in evolutionary psychology, and thus bases his arguments in our origins as a species: how we humans naturally think, and how we naturally search for new information because our consciousness drives us to need it.
    Footnote
    Rez. in: JASIST 71(2020) no.1, S.118-120 (Heidi Julien). - Vgl. auch den Beitrag: Cole, C.: A rebuttal of the book review of the book titled "The Consciousness' Drive: Information Need and the Search for Meaning": mapping cognitive and document spaces. In: Journal of the Association for Information Science and Technology. 71(2020) no.2, S.242.
    Weitere Rez. unter: https://crl.acrl.org/index.php/crl/article/view/17830/19659: "Author Charles Cole's understanding of human consciousness is built foundationally upon the work of evolutionary psychologist Merlin Donald, who visualized the development of human cognition in four phases, with three transitions. According to Donald's Theory of Mind, preceding types of cognition do not cease to exist after human cognition transitions to a new phase, but exist as four layers within the modern consciousness. Cole's narrative in the first part of the book recounts Donald's model of human cognition, categorizing episodic, mimetic, mythic, and theoretic phases of cognition. The second half of the book sets up a particular situation of consciousness using the frame theory of Marvin Minsky, uses Meno's paradox (how can we come to know that which we don't already know?) in a critique of framing as Minsky conceived it, and presents group and national level framing and shows their inherent danger in allowing information avoidance and sanctioning immoral actions. Cole concludes with a solution of information need being sparked or triggered that takes the human consciousness out of a closed information loop, driving the consciousness to seek new information.
    Cole's reliance upon Donald's Theory of Mind is limiting; it represents a major weakness of the book. Donald's Theory of Mind has been an influential model in evolutionary psychology, appearing in his 1991 book Origins of the Modern Mind: Three Stages in the Evolution of Culture and Cognition (Harvard University Press). Donald's approach is a top-down, conceptual model that explicates what makes the human mind different and exceptional from other animal intelligences. However, there are other alternative, useful, science-based models of animal and human cognition that begin with a bottom-up approach to understanding the building blocks of cognition shared in common by humans and other "intelligent" animals. For example, in "A Bottom-Up Approach to the Primate Mind," Frans B.M. de Waal and Pier Francesco Ferrari note that neurophysiological studies show that specific neuron assemblies in the rat hippocampus are active during memory retrieval and that those same assemblies predict future choices. This would suggest that episodic memory and future orientation aren't as advanced a process as Donald posits in his Theory of Mind. Also, neuroimaging studies in humans show that the cortical areas active during observations of another's actions are related in position and structure to those areas identified as containing mirror neurons in macaques. Could this point to a physiological basis for imitation? ... (Scott Curtis)"
  2. Cole, C.: Name collection by Ph.D. history students : inducing expertise (2000) 0.00
    0.0022374375 = product of:
      0.004474875 = sum of:
        0.004474875 = product of:
          0.00894975 = sum of:
            0.00894975 = weight(_text_:a in 4588) [ClassicSimilarity], result of:
              0.00894975 = score(doc=4588,freq=14.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.1685276 = fieldWeight in 4588, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4588)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This article reports a study of 45 Ph.D. history students and the effect of a technique of information seeking on their role as experts in training. It is assumed that the primary task of these students is to prove in their thesis that they have crossed over the line separating novice and expert, which they do by producing a thesis that makes both a substantial and original contribution to knowledge. Their information-seeking behavior, therefore, is a function of this primary task. It was observed that many of the Ph.D. students collected 'names' of people, places and things and assembled data about these names on 3x5 inch index cards. The 'names' were used as access points to the primary and secondary source material they had to read for their thesis. Besides using name collection as an information accessing technique, the larger importance of collecting 'names' is what it does for the Ph.D. student in terms of their primary task (to produce a thesis that proves they have become experts in their field). The article's thesis is that by inducing certain characteristics of expert thinking, the name collection technique's primary purpose is to push the student across the line into expert thinking
    Type
    a
  3. Cole, C.; Leide, J.E.; Large, A,; Beheshti, J.; Brooks, M.: Putting it together online : information need identification for the domain novice user (2005) 0.00
    0.0020714647 = product of:
      0.0041429293 = sum of:
        0.0041429293 = product of:
          0.008285859 = sum of:
            0.008285859 = weight(_text_:a in 3469) [ClassicSimilarity], result of:
              0.008285859 = score(doc=3469,freq=12.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15602624 = fieldWeight in 3469, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3469)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Domain novice users in the beginning stages of researching a topic find themselves searching for information via information retrieval (IR) systems before they have identified their information need. Pre-Internet access technologies adapted by current IR systems poorly serve these domain novice users, whose behavior might be characterized as rudderless and without a compass. In this article we describe a conceptual design for an information retrieval system that incorporates standard information need identification classification and subject cataloging schemes, called the INIIReye System, and a study that tests the efficacy of the innovative part of the INIIReye System, called the Associative Index. The Associative Index helps the user put together his or her associative thoughts-Vannevar Bush's idea of associative indexing for his Memex machine that he never actually described. For the first time, data from the study reported here quantitatively supports the theoretical notion that the information seeker's information need is identified through transformation of his/her knowledge structure (i.e., the seeker's cognitive map or perspective an the task far which information is being sought).
    Type
    a
  4. Spink, A.; Cole, C.: Human information behavior : integrating diverse approaches and information use (2006) 0.00
    0.0020714647 = product of:
      0.0041429293 = sum of:
        0.0041429293 = product of:
          0.008285859 = sum of:
            0.008285859 = weight(_text_:a in 4915) [ClassicSimilarity], result of:
              0.008285859 = score(doc=4915,freq=12.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15602624 = fieldWeight in 4915, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4915)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    For millennia humans have sought, organized, and used information as they learned and evolved patterns of human information behaviors to resolve their human problems and survive. However, despite the current focus an living in an "information age," we have a limited evolutionary understanding of human information behavior. In this article the authors examine the current three interdisciplinary approaches to conceptualizing how humans have sought information including (a) the everyday life information seeking-sense-making approach, (b) the information foraging approach, and (c) the problem-solution perspective an information seeking approach. In addition, due to the lack of clarity regarding the rote of information use in information behavior, a fourth information approach is provided based an a theory of information use. The use theory proposed starts from an evolutionary psychology notion that humans are able to adapt to their environment and survive because of our modular cognitive architecture. Finally, the authors begin the process of conceptualizing these diverse approaches, and the various aspects or elements of these approaches, within an integrated model with consideration of information use. An initial integrated model of these different approaches with information use is proposed.
    Type
    a
  5. Cole, C.: Shannon revisited : information in terms of uncertainty (1993) 0.00
    0.0020506454 = product of:
      0.004101291 = sum of:
        0.004101291 = product of:
          0.008202582 = sum of:
            0.008202582 = weight(_text_:a in 4069) [ClassicSimilarity], result of:
              0.008202582 = score(doc=4069,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.1544581 = fieldWeight in 4069, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4069)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Shannon's theory of communication is discussed from the point of view of his concept of uncertainty. It is suggested that there are two information concepts in Shannon, two different uncertainties, and at least two different entropy concepts. Information science focuses on the uncertainty associated with the transmission of the signal rather than the uncertainty associated with the selection of a message from a set of possible messages. The author believes the latter information concept, which is from the sender's point of view, has more to say to information science about what information is than the former, which is from the receiver's point of view and is mainly concerned with 'noise' reduction
    Type
    a
  6. Cole, C.: Operationalizing the notion of information as a subjective construct (1994) 0.00
    0.0020506454 = product of:
      0.004101291 = sum of:
        0.004101291 = product of:
          0.008202582 = sum of:
            0.008202582 = weight(_text_:a in 7747) [ClassicSimilarity], result of:
              0.008202582 = score(doc=7747,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.1544581 = fieldWeight in 7747, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=7747)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    We discuss information by attempting to operationalize it using: (1) Dervin and Nilan's idea that information is a subjective construct rather than an objective thing; (2) Brookes's idea that information is that which modifies knowledge structure; and (3) Neisser's idea that perception is top-down or schemata driven to the point of paradoxon. De Mey, Minsky's theorem of frames, and top-down and bottom-up models from reading theory are discussed. We conclude that information must be rare because only rare information can modify knowledge structure at its upper levels, and that to modify knowledge structure at its upper levels (its essence) information may have to enter the perception cycle in 2 stages
    Type
    a
  7. Cole, C.: Intelligent information retrieval: diagnosing information need : Part I: the theoretical framework for developing an intelligent IR tool (1998) 0.00
    0.0020296127 = product of:
      0.0040592253 = sum of:
        0.0040592253 = product of:
          0.008118451 = sum of:
            0.008118451 = weight(_text_:a in 6431) [ClassicSimilarity], result of:
              0.008118451 = score(doc=6431,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15287387 = fieldWeight in 6431, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.09375 = fieldNorm(doc=6431)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  8. Cole, C.: Information need : a theory connecting information search to knowledge formation (2012) 0.00
    0.0020296127 = product of:
      0.0040592253 = sum of:
        0.0040592253 = product of:
          0.008118451 = sum of:
            0.008118451 = weight(_text_:a in 4985) [ClassicSimilarity], result of:
              0.008118451 = score(doc=4985,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15287387 = fieldWeight in 4985, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4985)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Content
    Inhalt: The importance of information need -- The history of information need -- The framework for our discussion -- Modeling the user in information search -- Information seeking's conceptualization of information need during information search -- Information use -- Adaptation : internal information flows and knowledge generation -- A theory of information need -- How information need works -- The user's situation in the pre-focus search -- The situation of user's information need in pre-focus information search -- The selection concept -- A review of the user's pre-focus information search -- How information need works in a focusing search -- Circles 1 to 5 : how information need works -- Corroborating research -- Applying information need -- The astrolabe : an information system for stage 3 information exploration -- Conclusion.
  9. Spink, A.; Cole, C.: Introduction (2004) 0.00
    0.001913537 = product of:
      0.003827074 = sum of:
        0.003827074 = product of:
          0.007654148 = sum of:
            0.007654148 = weight(_text_:a in 2389) [ClassicSimilarity], result of:
              0.007654148 = score(doc=2389,freq=16.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.14413087 = fieldWeight in 2389, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2389)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This is the second part of a two-part special topic JASIST issue an information seeking. The first part presented papers an the topics of health information seeking and everyday life information seeking or ELIS (i.e., information seeking outside of work or school). This second issue presents papers an the topics of information retrieval and information seeking in industry environments. Information retrieval involves a specific kind of information seeking, as the user is in direct contact with an information interface and with potential sources of information from the system's database. The user conducts the search using various strategies, tactics, etc., but there is also the possibility that information processes will occur resulting in a change in the way the user thinks about the topic of the search. If this occurs, the user is, in effect, using the found data, turning it into an informational element of some kind. Such processes can be facilitated in the design of the information retrieval system. Information seeking in industry environments takes up more and more of our working day. Even companies producing industrial products are in fact mainly producing informational elements of some kind, often for the purpose of making decisions or as starting positions for further information seeking. While there may be company mechanisms in place to aid such information seeking, and to make it more efficient, if better information seeking structures were in place, not only would workers waste less time in informational pursuits, but they would also find things, discover new processes, etc., that would benefit the corporation's bottom line. In Figure l, we plot the six papers in this issue an an information behavior continuum, following a taxonomy of information behavior terms from Spink and Cole (2001). Information Behavior is a broad term covering all aspects of information seeking, including passive or undetermined information behavior. Information-Seeking Behavior is usually thought of as active or conscious information behavior. Information-Searching Behavior describes the interactive elements between a user and an information system. Information-Use Behavior is about the user's acquisition and incorporation of data in some kind of information process. This leads to the production of information, but also back to the broad range of Information Behavior in the first part of the continuum. Though we plot all papers in this issue along this continuum, they take into account more than their general framework. The three information retrieval reports veer from the traditional information-searching approach of usersystem interaction, while the three industry environment articles veer from the traditional information-seeking approach of specific context information-seeking studies.
    Type
    a
  10. Spink, A.; Cole, C.: New directions in cognitive information retrieval : conclusion and further research (2005) 0.00
    0.001913537 = product of:
      0.003827074 = sum of:
        0.003827074 = product of:
          0.007654148 = sum of:
            0.007654148 = weight(_text_:a in 637) [ClassicSimilarity], result of:
              0.007654148 = score(doc=637,freq=16.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.14413087 = fieldWeight in 637, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=637)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    New Directions in Cognitive Information Retrieval (IR) gathers user or cognitive approaches to IR research into one volume. The group of researchers focus on a middleground perspective between system and user. They ask the question: What is the nexus between the wider context of why and how humans behave when seeking information and the technological and other constraints that determine the interaction between user and machine? These researchers' concern for the application of user/cognitive-oriented research to IR system design thus serves as a meeting ground linking computer scientists with their largely system performance concerns and the social science research that examines human information behavior in the wider context of how human perception and cognitive mechanisms function, and the work and social frameworks in which we live. The researchers in this volume provide an in-depth revaluation of the concepts that form the basis of current IR retrieval system design. Current IR systems are in a certain sense based on design conceptualizations that view - the user's role in the user-system interaction as an input and monitoring mechanism for system performance; - the system's role in the user-system interaction as a data acquisition system, not an information retrieval system; and - the central issue in the user-system interaction as the efficacy of the system's matching algorithms, matching the user request statement to representations of the document set contained in the system's database. But the era of matching-focused approaches to interactive IR appears to be giving way to a concern for developing interactive systems to facilitate collaboration between users in the performance of their work and social tasks. There is room for cognitive approaches to interaction to break in here.
    Source
    New directions in cognitive information retrieval. Eds.: A. Spink, C. Cole
    Type
    a
  11. Cole, C.; Beheshti, J.; Leide, J. E.; Large, A.: Interactive information retrieval : bringing the user to a selection state (2005) 0.00
    0.0017899501 = product of:
      0.0035799001 = sum of:
        0.0035799001 = product of:
          0.0071598003 = sum of:
            0.0071598003 = weight(_text_:a in 36) [ClassicSimilarity], result of:
              0.0071598003 = score(doc=36,freq=14.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.13482209 = fieldWeight in 36, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=36)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    There have been various approaches to conceptualizing interactive information retrieval (IR), which can be generally divided into system and user approaches (Hearst, 1999; cf. also Spink, 1997). Both system and user approaches define user-system interaction in terms of the system and the user reacting to the actions or behaviors of the other: the system reacts to the user's input; the user to the output of the system (Spink, 1997). In system approach models of the interaction, e.g., Moran (1981), "[T]he user initiates an action or operation and the system responds in some way which in turn leads the user to initiate another action and so on" (Beaulieu, 2000, p. 433). In its purest form, the system approach models the user as a reactive part of the interaction, with the system taking the lead (Bates, 1990). User approaches, on the other hand, in their purest form wish to insert a model of the user in all its socio-cognitive dimensions, to the extent that system designers consider such approaches impractical (Vakkari and Jarvelin, 2005, Chap. 7, this volume). The cognitive approach to IR interaction attempts to overcome this divide (Ruthven, 2005, Chap. 4, this volume; Vakkari and Jarvelin, 2005 Chap. 7, this volume) by representing the cognitive elements of both system designers and the user in the interaction model (Larsen and Ingwersen, 2005 Chap. 3, this volume). There are cognitive approach researchers meeting in a central ground from both the system and user side. On the system side, are computer scientists employing cognitive research to design more effective IR systems from the point of view of the user's task (Nathan, 1990; Fischer, Henninger, and Redmiles, 1991; O'Day and Jeffries, 1993; Russell et al., 1993; Kitajima and Polson, 1996; Terwilliger and Polson, 1997). On the user side are cognitive approach researchers applying methods, concepts and models from psychology to design systems that are more in tune with how users acquire information (e.g., Belkin, 1980; Ford (2005, Chap. 5, this volume); Ingwersen (Larsen and Ingwersen, 2005, Chap. 3, this volume); Saracevic, 1996; Vakkari (Vakkari and Jarvelin, 2005, Chap. 7, this volume)).
    Source
    New directions in cognitive information retrieval. Eds.: A. Spink, C. Cole
    Type
    a
  12. Cole, C.; Mandelblatt, B.: Using Kintsch's discourse comprehension theory to model the user's coding of an informative message from an enabling information retrieval system (2000) 0.00
    0.0016913437 = product of:
      0.0033826875 = sum of:
        0.0033826875 = product of:
          0.006765375 = sum of:
            0.006765375 = weight(_text_:a in 5161) [ClassicSimilarity], result of:
              0.006765375 = score(doc=5161,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.12739488 = fieldWeight in 5161, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5161)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    With new interactive technology, information science can use its traditional information focus to increase user satisfaction by designing information retrieval systems (IRSs) that inform the user about her task, and help the user get the task done, while the user is on-line interacting with the system. By doing so, the system enables the user to perform the task for which the information is being sought. In previous articles, we modeled the information flow and coding operations of a user who has just received an informative IRS message, dividing the user's processing of the IRS message into three subsystem levels. In this article, we use Kintsch's proposition-based construction-integration theory of discourse comprehension to further detail the user coding operations that occur in each of the three subsystems. Our enabling devices are designed to facilitate a specific coding operation in a specific subsystem. In this article, we describe an IRS device made up of two separate parts that enable the user's (1) decoding and (2) encoding of an IRS message in the Comprehension subsystem
    Type
    a
  13. Yi, K.; Beheshti, J.; Cole, C.; Leide, J.E.; Large, A.: User search behavior of domain-specific information retrieval systems : an analysis of the query logs from PsycINFO and ABC-Clio's Historical Abstracts/America: History and Life (2006) 0.00
    0.0016913437 = product of:
      0.0033826875 = sum of:
        0.0033826875 = product of:
          0.006765375 = sum of:
            0.006765375 = weight(_text_:a in 197) [ClassicSimilarity], result of:
              0.006765375 = score(doc=197,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.12739488 = fieldWeight in 197, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=197)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The authors report the findings of a study that analyzes and compares the query logs of PsycINFO for psychology and the two history databases of ABC-Clio: Historical Abstracts and America: History and Life to establish the sociological nature of information need, searching, and seeking in history versus psychology. Two problems are addressed: (a) What level of query log analysis - by individual query terms, by co-occurrence of word pairs, or by multiword terms (MWTs) - best serves as data for categorizing the queries to these two subject-bound databases; and (b) how can the differences in the nature of the queries to history versus psychology databases aid in our understanding of user search behavior and the information needs of their respective users. The authors conclude that MWTs provide the most effective snapshot of user searching behavior for query categorization. The MWTs to ABC-Clio indicate specific instances of historical events, people, and regions, whereas the MWTs to PsycINFO indicate concepts roughly equivalent to descriptors used by PsycINFO's own classification scheme. The average length of queries is 3.16 terms for PsycINFO and 3.42 for ABC-Clio, which breaks from findings for other reference and scholarly search engine studies, bringing query length closer in line to findings for general Web search engines like Excite.
    Type
    a
  14. Tao, H.; Cole, C.: Wade-Giles or Hanyu Pinyin : practical issues in the transliteration of Chinese titles and proper names (1990) 0.00
    0.001674345 = product of:
      0.00334869 = sum of:
        0.00334869 = product of:
          0.00669738 = sum of:
            0.00669738 = weight(_text_:a in 3575) [ClassicSimilarity], result of:
              0.00669738 = score(doc=3575,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.12611452 = fieldWeight in 3575, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3575)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This article briefly examines an issue currently facing cataloguers: how to transliterate Chinese proper names and titles into romanized letters. The two major transliteration systems are Wade-Giles, still used by many libraries in the West, and Hanyu Pinyin, which is not only used in the People's Republic of China's elementary schools as a pronunciation aid, but has recently been adopted by our own western media and certain departments of the American government. The authors advocate the complete abandonment of Wade-Giles in favor of Hanyu Pinyin.
    Type
    a
  15. Spink, A.; Cole, C.: New directions in cognitive information retrieval : introduction (2005) 0.00
    0.0016571716 = product of:
      0.0033143433 = sum of:
        0.0033143433 = product of:
          0.0066286866 = sum of:
            0.0066286866 = weight(_text_:a in 647) [ClassicSimilarity], result of:
              0.0066286866 = score(doc=647,freq=12.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.12482099 = fieldWeight in 647, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=647)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Humans have used electronic information retrieval (IR) systems for more than 50 years as they evolved from experimental systems to full-scale Web search engines and digital libraries. The fields of library and information science (LIS), cognitive science, human factors and computer science have historically been the leading disciplines in conducting research that seeks to model human interaction with IR systems for all kinds of information related behaviors. As technology problems have been mastered, the theoretical and applied framework for studying human interaction with IR systems has evolved from systems-centered to more user-centered, or cognitive-centered approaches. However, cognitive information retrieval (CIR) research that focuses on user interaction with IR systems is still largely under-funded and is often not included at computing and systems design oriented conferences. But CIR-focused research continues, and there are signs that some IR systems designers in academia and the Web search business are realizing that user behavior research can provide valuable insights into systems design and evaluation. The goal of our book is to provide an overview of new CIR research directions. This book does not provide a history of the research field of CIR. Instead, the book confronts new ways of looking at the human information condition with regard to our increasing need to interact with IR systems. The need has grown due to a number of factors, including the increased importance of information to more people in this information age. Also, IR was once considered document-oriented, but has now evolved to include multimedia, text, and other information objects. As a result, IR systems and their complexity have proliferated as users and user purposes for using them have also proliferated. Human interaction with IR systems can often be frustrating as people often lack an understanding of IR system functionality.
    Source
    New directions in cognitive information retrieval. Eds.: A. Spink, C. Cole
    Type
    a
  16. Beheshti, J.; Cole, C.; Abuhimed, D.; Lamoureux, I.: Tracking middle school students' information behavior via Kuhlthau's ISP Model : temporality (2015) 0.00
    0.0014647468 = product of:
      0.0029294936 = sum of:
        0.0029294936 = product of:
          0.005858987 = sum of:
            0.005858987 = weight(_text_:a in 1819) [ClassicSimilarity], result of:
              0.005858987 = score(doc=1819,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.11032722 = fieldWeight in 1819, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1819)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The article reports a field study investigating the temporality of the information behavior of 44 grade 8 students from initiation to completion of their school inquiry-based history project. The conceptual framework for the study is Kuhlthau's 6-stage information-search process (ISP) model. The objective of the study is to test and extend ISP model concepts. As per other ISP model studies, our study measured the evolution of the feelings, thoughts, and actions of the study participants over the 3-month period of their class project. The unique feature of this study is the unlimited access the researchers had to a real-life history class, resulting in 12 separate measuring periods. We report 2 important findings of the study. First, through factor analysis, we determined 5 factors that define the temporality of completing an inquiry-based project for these grade 8 students. The second main finding is the importance of the students' consultations with their classmates, siblings, parents, and teachers in the construction of the knowledge necessary to complete their project.
    Type
    a
  17. Cole, C.; Beheshti, J.; Abuhimed, D.; Lamoureux, I.: ¬The end game in Kuhlthau's ISP Model : knowledge construction for grade 8 students researching an inquiry-based history project (2015) 0.00
    0.0014647468 = product of:
      0.0029294936 = sum of:
        0.0029294936 = product of:
          0.005858987 = sum of:
            0.005858987 = weight(_text_:a in 2265) [ClassicSimilarity], result of:
              0.005858987 = score(doc=2265,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.11032722 = fieldWeight in 2265, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2265)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This article reports on a field study of the information behavior of Grade 8 students researching an inquiry-based class history project. Kuhlthau's 7-stage Information Search Process (ISP) model forms the conceptual framework for the study. The aim of the study was to define an end game for the ISP model by answering the following question: How do the student participants' feelings, thoughts, and information behavior lead to the construction of new knowledge? Study findings tentatively indicate that knowledge construction results from an iterative process between the student and information, which can be divided into 3 phases. In the first phase, the students formulate questions from their previous knowledge to start knowledge construction; in the second phase, newly found topic information causes students to ask questions; and in the third phase, the students answer the questions asked by this newly found topic information. Based on these results and Kuhlthau's own ISP stage 7 assessment definition of the ISP model end game, we propose a model of knowledge construction inserted as an extra row in the ISP model framework.
    Type
    a