Search (2 results, page 1 of 1)

  • × author_ss:"Erhan, D."
  • × theme_ss:"Automatisches Indexieren"
  1. Vinyals, O.; Toshev, A.; Bengio, S.; Erhan, D.: ¬A picture is worth a thousand (coherent) words : building a natural description of images (2014) 0.00
    0.0030184684 = product of:
      0.006036937 = sum of:
        0.006036937 = product of:
          0.012073874 = sum of:
            0.012073874 = weight(_text_:a in 1874) [ClassicSimilarity], result of:
              0.012073874 = score(doc=1874,freq=52.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.22735618 = fieldWeight in 1874, product of:
                  7.2111025 = tf(freq=52.0), with freq of:
                    52.0 = termFreq=52.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=1874)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Content
    "People can summarize a complex scene in a few words without thinking twice. It's much more difficult for computers. But we've just gotten a bit closer -- we've developed a machine-learning system that can automatically produce captions (like the three above) to accurately describe images the first time it sees them. This kind of system could eventually help visually impaired people understand pictures, provide alternate text for images in parts of the world where mobile connections are slow, and make it easier for everyone to search on Google for images. Recent research has greatly improved object detection, classification, and labeling. But accurately describing a complex scene requires a deeper representation of what's going on in the scene, capturing how the various objects relate to one another and translating it all into natural-sounding language. Many efforts to construct computer-generated natural descriptions of images propose combining current state-of-the-art techniques in both computer vision and natural language processing to form a complete image description approach. But what if we instead merged recent computer vision and language models into a single jointly trained system, taking an image and directly producing a human readable sequence of words to describe it? This idea comes from recent advances in machine translation between languages, where a Recurrent Neural Network (RNN) transforms, say, a French sentence into a vector representation, and a second RNN uses that vector representation to generate a target sentence in German. Now, what if we replaced that first RNN and its input words with a deep Convolutional Neural Network (CNN) trained to classify objects in images? Normally, the CNN's last layer is used in a final Softmax among known classes of objects, assigning a probability that each object might be in the image. But if we remove that final layer, we can instead feed the CNN's rich encoding of the image into a RNN designed to produce phrases. We can then train the whole system directly on images and their captions, so it maximizes the likelihood that descriptions it produces best match the training descriptions for each image.
    Our experiments with this system on several openly published datasets, including Pascal, Flickr8k, Flickr30k and SBU, show how robust the qualitative results are -- the generated sentences are quite reasonable. It also performs well in quantitative evaluations with the Bilingual Evaluation Understudy (BLEU), a metric used in machine translation to evaluate the quality of generated sentences. A picture may be worth a thousand words, but sometimes it's the words that are most useful -- so it's important we figure out ways to translate from images to words automatically and accurately. As the datasets suited to learning image descriptions grow and mature, so will the performance of end-to-end approaches like this. We look forward to continuing developments in systems that can read images and generate good natural-language descriptions. To get more details about the framework used to generate descriptions from images, as well as the model evaluation, read the full paper here." Vgl. auch: https://news.ycombinator.com/item?id=8621658.
    Source
    http://googleresearch.blogspot.de/2014/11/a-picture-is-worth-thousand-coherent.html
  2. Vinyals, O.; Toshev, A.; Bengio, S.; Erhan, D.: Show and tell : a neural image caption generator (2014) 0.00
    0.0022374375 = product of:
      0.004474875 = sum of:
        0.004474875 = product of:
          0.00894975 = sum of:
            0.00894975 = weight(_text_:a in 1869) [ClassicSimilarity], result of:
              0.00894975 = score(doc=1869,freq=14.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.1685276 = fieldWeight in 1869, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1869)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Automatically describing the content of an image is a fundamental problem in artificial intelligence that connects computer vision and natural language processing. In this paper, we present a generative model based on a deep recurrent architecture that combines recent advances in computer vision and machine translation and that can be used to generate natural sentences describing an image. The model is trained to maximize the likelihood of the target description sentence given the training image. Experiments on several datasets show the accuracy of the model and the fluency of the language it learns solely from image descriptions. Our model is often quite accurate, which we verify both qualitatively and quantitatively. For instance, while the current state-of-the-art BLEU-1 score (the higher the better) on the Pascal dataset is 25, our approach yields 59, to be compared to human performance around 69. We also show BLEU-1 score improvements on Flickr30k, from 56 to 66, and on SBU, from 19 to 28. Lastly, on the newly released COCO dataset, we achieve a BLEU-4 of 27.7, which is the current state-of-the-art.
    Content
    Vgl.: http://googleresearch.blogspot.de/2014/11/a-picture-is-worth-thousand-coherent.html. Vgl. auch: https://news.ycombinator.com/item?id=8621658.